Research Groups
Your current location:Home >> Research Groups
Lei Wang
Plant Circadian Molecular System and Development     Professor
1999, BS, Northeast Normal University. 2002, MS, Jilin Agricultural University. 2006, PhD, Institute of Botany, Chinese Academy of Sciences. 2006-2013, Postdoctoral Researcher, Department of Molecular Genetics, Ohio State University, USA. 2010.03- 2010.09, Visiting Scientist, Pohang Science and Technology University, Korea. 2013-present, Key Laboratory for Molecular Plant Physiology, Chinese Academy of Sciences.
Tel:010-62836175 E-mail:wanglei@ibcas.ac.cn
  • Research Topics
  • Lab Members
  • Yuanyuan Zhang

    Associate Professor
    zhangyy@ibcas.ac.cn
    010-62836165
  • Yi Zuo

    Associate Professor
    zuoyi@ibcas.ac.cn
    010-62836165
  • Bin Li

    Engineer
    libin@ibcas.ac.cn
    010-62836165
  • Yuqing He

    Postdoc
    heyuqing@ibcas.ac.cn
    010-62836165
Publications
  • Zuo Y#, Liu HB#, Li B#, Zhao H, Li XL, Chen JT, Wang L, Zheng QB, He YQ, Zhang JS, Wang MX, Liang CZ, Wang L*. 2024. The Idesia polycarpa genome provides insightsinto its evolution and oil biosynthesis. Cell Reports, https://doi.org/10.1016/j.celrep.2024.113909
  • Xu H, Zuo Y, Wei J, Wang L*. 2023. The circadian clock coordinates the tradeoff between adaptation to abiotic stresses and yield in crops. Biology, 12(11):1364

  • Yu YJ, Su C, He YQ, Wang L*. 2023. B-Box proteins BBX28 and BBX29 interplay with PSEUDO-RESPONSE REGULATORS to fine-tune circadian clock in Arabidopsis. Plant Cell & Environment, 46(9): 2810-2826

  • Xu H, Wang XL, Wei J, Zuo Y, Wang L*. 2023. The regulatory networks of the circadian clock involved in plant adaptation and crop yield. Plants, 12(9):1897

  • He YQ, Yu YJ, Wang XL, Qin YM, Su C, Wang L*. 2022. Aschoff’s rule on circadian rhythms orchestrated by blue light sensor CRY2 and clock component PRR9. Nature Communications, 13: 5869

  • Wang Y#, Su C#, Yu YJ#, He YQ, Wei H, Li N, Li H, Duan J, Li B, Li JG, Davis S, Wang L*. 2022. TIME FOR COFFEE regulates phytochrome A-mediated hypocotyl growth through dawn-phased signaling. Plant Cell, 34: 2907-2924

  • Wei H, Xu H, Su C, Wang XL, Wang L*. 2022. Rice CIRCADIAN CLOCK ASSOCIATED1 transcriptionally regulates ABA signaling to confer multiple abiotic stress tolerance. Plant Physiology, 190: 1057-1073

  • Ronald J, Su C, Wang L, Davis SJ*. 2022. Cellular localization of Arabidopsis EARLY FLOWERING3 is responsive to light quality. Plant Physiology, 190: 1024-1036

  • Xu XD*, Yuan L, Yang X, Zhang X, Wang L, Xie QG*. 2022. Circadian clock in plants: Linking timing to fitness. Journal of Integrative Plant Biology, 64(4):792-811

  • Yan JP, Li SB, Kim YJ, Zeng QN, Radziejwoski A, Wang L, Nomura Y, Nakagami H, Somers DE. 2021. TOC1 clock protein phosphorylation controls complex formation with NF-YB/C to repress hypocotyl growth. The EMBO Journal, 40: e108684
  • Wang XL#, He YQ#, Wei H, Wang L*. 2021. A clock regulatory module is required for salt tolerance and control of heading date in rice. Plant Cell & Environment, 44: 3283-3301
  • Yuan L#, Yu YJ#, Liu MM, Song Y, Li HM, Sun JQ, Wang Q, Xie QG*, Wang L*, Xu XD*. 2021. BBX19 fine-tunes the circadian rhythm by interacting with PSEUDO-RESPONSE REGULATOR proteins to facilitate their repressive effect on morning-phased clock genes. Plant Cell, 33: 2602-2617
  • Zhang YY, Li N, Wang L*. 2021. Phytochrome interacting factor proteins regulate cytokinesis in Arabidopsis. Cell Reports, 35: 109095
  • Li N, Bo C, Zhang YY*, Wang L*. 2021.PHYTOCHROME INTERACTING FACTORS PIF4 and PIF5 promote heat stress induced leaf senescence in Arabidopsis. Journal of Experimental Botany, 72: 4577-4589 
  • Tian WW#, Wang RY#, Bo CP, Yu YJ, Zhang YY, Shin G, Kim W, Wang L*. 2021. SDC mediates DNA methylation-controlled clock pace by interacting with ZTL in Arabidopsis. Nucleic Acids Research, 49: 3764-3790
  • Su C, Wang Y, Yu YJ, He YQ, Wang L*. 2021. Coordinative regulation of plants growth and development by light and circadian clock. aBIOTECH, 2: 179-189
  • Wang Y, Lu Z, Wang L*. 2021. Uncover the nuclear proteomic landscape with enriched nuclei followed by label-free quantitative mass spectrometry. Methods in Molecular Biology, 2297:115-124
  • Wei H, Wang XL, He YQ, Xu H, Wang L*. 2021. Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1-mediated sodium homeostasis. The EMBO Journal, 40: e105086
  • Wei H, Wang XL, Xu H, Wang L*.2020. Molecular basis of heading date control in rice. aBIOTECH, 1:219-232
  • Li N#, Zhang YY#, He YQ, Wang Y, Wang L*. 2020. Pseudo Response Regulators regulate photoperiodic hypocotyl growth by repressing PIF4/5 transcription. Plant Physiology, 183(2): 686-699[more]
  • Wang Y, He YQ, Su C, Zentella R, Sun TP, Wang L*. 2020. Nuclear localized O-fucosyltransferase SPY facilitates PRR5 proteolysis to fine-tune the pace of Arabidopsis circadian clock. Molecular Plant, 3: 446-458[more]
  • Wang Y#, Qin YM#,  Li B, Zhang YY, Wang L*. 2020.  Attenuated TOR signaling lengthens circadian period in Arabidopsis. Plant Signaling & Behavior, 2:e1710935[more]
  • Kim TS, Wang L, Kim YJ, Somers DE*. 2020. Compensatory mutations in GI and ZTL may modulate temperature compensation in the circadian clock. Plant Physiology, 2: 1130-1141[more]
  • Zhang YY, Bo CP, Wang L*. 2019. Novel crosstalks between circadian clock and jasmonic acid pathway finely coordinate the tradeoff among plant growth, senescence and defense. International Journal of Molecular Sciences, 20: 5254[more]
  • Li B#, Wang Y#, Zhang YY, Tian WW, Chong K, Jang JC, Wang L*. 2019. PRR5, 7 and 9 positively modulate TOR signaling-mediated root cell proliferation by repressing TANDEM ZINC FINGER 1 in Arabidopsis. Nucleic Acids Research, 10: 5001-5015[more]
  • Wang Y, Zhang YY, Wang L*. 2018. Cross regulatory network between circadian clock and leaf senescence is emerging in higher plants. Frontiers in Plant Science, 9: 700[more]
  • Zhang YY, Wang Y, Wei H, Li N, Tian WW, Chong K, Wang L*. 2018. Circadian evening complex represses Jasmonate-induced leaf senescence in Arabidopsis. Molecular Plant, 11: 326-337[more]
  • Cha JY, Kim J, Kim TS, Zeng QN, Wang L, Lee SY, Kim WY, Somers DE*. 2017. GIGANTEA acts as a co-chaperone with HSP90 to facilitate maturation of the client protein ZEITLUPE in the Arabidopsis circadian clock. Nature Communications, 8: 3[more]
  • Wang L, Chong K*. 2016. The essential role of cytokin in signaling in root apical meristem formation during somatic embryogenesis. Frontiers in Plant Science, 6: 1196-1200[more]
  • Jia YB, Tian HY, Li HJ, Yu QQ, Wang L, Friml J, Ding ZJ*. 2015. The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development. Journal of Experimental Botany, 4631-4642[more]
  • Choudhary M, Nomura Y, Wang L, Nakagami H, Somers DE*. 2015. Quantitative circadian phosphoproteomic analysis of Arabidopsis reveals extensive clock control of key components in physiological, metabolic, and signaling pathways. Molecular & Cellular Proteomics, 14: 2243-2260[more]
  • Kim Y, Lim J, Yeom M, Kim H, Kim J, Wang L, Somers D, Nam H*. 2013. ELF4 regulates GIGANTEA chromatin access through subnuclear sequestration. Cell Reports, 3: 671-677[more]
  • Wang L, Kim J, Somers D*. 2013. Transcriptional corepressor TOPLESS comlexes with pseudoresponse regulator proteins and histone deacetylase to regulate circadian transcription. Proc. Natl. Acad. Sci. USA, 110: 761-766[more]
  • Zhang C, Xu YY, Guo SY, Zhu JY, Huan Q, Liu HH, Wang L, Luo GZ, Wang XJ, Chong K*. 2012. Dynamics of brassinosteroid response modulated by negative regulator LIC in rice. PLoS Genetics, 8: e1002686[more]
  • Wang L, Chong K*. 2010. Auxin brassinosteroids and G protein signaling. In Integrated G protein Signaling in Plants. Series of Signaling and Communication in Plants. page: 135-154 (Book chapter).[more]
  • Wang L, Fujiwara S and Somers D*. 2010. PRR5 regulates phosphorylation, nuclear import and subnuclear localization of TOC1 in the Arabidopsis circadian clock. The EMBO Journal, 29: 1903-1915[more]
  • Li D, Wang L, Wang M, Xu Y, Luo W, Liu Y, Xu Z, Li J, Chong K*. 2009. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Plant Biotechnology Journal, 7: 791–806[more]
  • Wang L, Xu Y, Zhang C Ma QB, Kim J, Xu ZH, Chong K*. 2008. OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PLoS ONE. 3: e3521[more]
  • Fujiwara S#, Wang L#, Han L, Suh SS, Salomé P, McClung R, Somers D*. 2008. Post-translational regulation of the Arabidopsis circadian clock through selective proteolysis and phosphorylation of pseudo-response regulator proteins. Journal of Biological Chemistry, 283: 23073-23083. (cover story).[more]
  • Wang L, Xu YY, Li J, Powell R, Xu ZH, Chong K*. 2007. Transgenic rice plants ectopically expressing AtBAK1 are semi-dwarfed and hypersensitive to 24-epibrassinolide. Journal of Plant Physiology, 164: 655-664[more]
  • Liu KM, Wang L, Xu YY, Chen N, Ma QB, Li F, Chong K*. 2007. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta, 226: 1007-1016 [more]
  • Wang L, Xu YY, Ma QB, Li D, Xu ZH, Chong K*. 2006. Heterotrimeric G protein alpha subunit is involved in rice brassinosteroid response. Cell Research, 16: 916-922[more]
  • Wang ZY*, Wang QM, Chong K, Wang FR, Wang L, Bai MY, Jia CG. 2006. The brassinosteroid signal transduction pathway. Cell Research, 16: 427-434[more]
  • Key Laboratory of Plant Molecular Physiology, CAS    Copyright 2010 KLPB
    TEL:010-62836674      FAX:cuiqiang@ibcas.ac.cn      ADDRESS:No 20 Nanxincun, Xiangshan, Beijing,China