科研队伍
你现在所处的位置是:首页 > 科研队伍 > 细胞分化与器官发生 > 王 雷 研究组
王 雷 研究组
王雷     研究员

1999年,东北师范大学获学士学位;

2002年,吉林农业大学获硕士学位;

2006年,中国科学院植物研究所获博士学位;

2006-2013年,在美国俄亥俄州立大学分子遗传学系从事博士后研究;

2010年3月-2010年9月,在韩国浦项科技大学作研究访问学者;

2013年11月到中国科学院植物研究所所工作。

现任中国科学院植物研究所党委委员、植物分子生理学重点实验室主任、中国科学院大学岗位教授、《植物学报》主编、中国细胞生物学学会生物节律分会副会长、中国植物学会常务理事、中国植物生理与植物分子生物学会理事等,以及国际学术期刊Plant Cell and Environment、Frontiers in Plant Science杂志副主编和Journal of Circadian Rhythm的编委等学术职务。

在Proc. Natl. Acad. Sci. USA,EMBO Journal,Nature Communications,Plant Cell,Nucleic Acids Research,Cell Reports,Molecular Plant,Plant Physiology等期刊发表SCI收录论文50余篇。参与申报国内专利11项,其中已授权4项。参与国际专著编写2部。

联系方式:010-62836175 E-mail:wanglei@ibcas.ac.cn
  • 研究方向
  • 课题组成员
  • 张媛媛

    副研究员
    zhangyy@ibcas.ac.cn
    010-62836165
  • 左毅

    助理研究员
    zuoyi@ibcas.ac.cn
    010-62836165
  • 韩振云

    助理研究员

    010-62836165
  • 李彬

    工程师
    libin@ibcas.ac.cn
    010-62836165
  • 何雨晴

    博士后
    heyuqing@ibcas.ac.cn
    010-62836165
  • 王希岭

    博士后
    wangxiling@ibcas.ac.cn
    010-62836165
  • 秦玉梅

    博士生
    1242272529@qq.com
    010-62836165
  • 苏晨

    博士生
    suchen95@hotmail.com
    010-62836165
  • 徐航

    博士生
    xuhang3156@163.com
    010-62836165
  • 牛钰凡

    博士生
    13474054949@163.com
    010-62836165
  • 冯震

    博士生
    fengzhen@ibcas.ac.cn
    010-62836165
  • 向浩鑫

    博士生

    010-62836165
  • 陈玲玲

    博士生

  • 刘春燕

    硕士生

    010-62836165
  • 王宇

    硕士生

    010-62836165
  • 陈家廷

    硕士生

    010-62836165
  • 赵海军

    硕士生

    010-62836165
  • 侯群威

    硕士生

  • 李健

    硕士生

研究论文
  • Zhang YY, Zhao HJ, Xiang HX, Zhang JS, Wang L*. 2025. Seasonal and diurnal transcriptome Atlas in natural environment reveals flowering time regulatory network in Alfalfa. Plant Cell & Environment, https://doi.org/10.1111/pce.15466
  • He S, Wang XL, Kim S, Kong L, Liu AL, Wang L, Wang Y, Shan LB, He P, Jang J*. 2024. Modulation of stress granule dynamics by phosphorylation and ubiquitination in plants. iSience, 27(11): 111162
  • He SL#, Li B#, Zahurancik WJ, Arthur HC, Sidharthan V, Gopalan V, Wang L*, Jang JC*. 2024. Overexpression of stress granule protein TZF1 enhances salt stress tolerance by targeting ACA11 mRNA for degradation in Arabidopsis. Frontiers in Plant Science, 15: 1375478
  • Liu H, Zhao H, Zhang Y, Li X, Zuo Y, Wu Z, Jin K, Xian W, Wang W, Ning W, Liu Z, Zhao X, Wang L, Sage RF, Lu T, Stata M*, Cheng SF*. 2024. The genome of Eleocharis vivipara elucidates the genetics of C3-C4 photosynthetic plasticity and karyotype evolution in the Cyperaceae. Journal of Integrative Plant Biology, 66(11): 2505-2527
  • Chawla S*, O'Neill J, Knight MI, He YQ, Wang L, Maronde E, Rodríguez SG, van Ooijen G, Garbarino-Pico E, Wolf E, Dkhissi-Benyahya O, Nikhat A, Chakrabarti S, Youngstedt SD, Zi-Ching Mak N, Provencio I, Oster H, Goel N, Caba M, Oosthuizen M, Duffield GE, Chabot C, Davis SJ. 2024. Timely Questions Emerging in Chronobiology: The circadian clock keeps on ticking. Journal of Circadian Rhythms, 22: 2. doi: 10.5334/jcr.237
  • Zuo Y#, Liu HB#, Li B#, Zhao H, Li XL, Chen JT, Wang L, Zheng QB, He YQ, Zhang JS, Wang MX, Liang CZ, Wang L*. 2024. The Idesia polycarpa genome provides insights into its evolution and oil biosynthesis. Cell Reports, 43(3): 113909. https://doi.org/10.1016/j.celrep.2024.113909
  • Chawla S, Oster H, Duffield GE, Maronde E, Guido ME, Chabot C, Dkhissi-Benyahya O, Provencio I, Goel N, Youngstedt SD, Zi Ching Mak N, Caba M, Nikhat A, Chakrabarti S, Wang L, Davis SJ*. 2024. Reflections on several landmark advances in circadian biology. Journal of Circadian Rhythms, 22(1): 1–11. doi: https://doi.org/10.5334/jcr.236
  • Xu H, Zuo Y, Wei J, Wang L*. 2023. The circadian clock coordinates the tradeoff between adaptation to abiotic stresses and yield in crops. Biology, 12(11): 1364
  • Yu YJ, Su C, He YQ, Wang L*. 2023. B-Box proteins BBX28 and BBX29 interplay with PSEUDO-RESPONSE REGULATORS to fine-tune circadian clock in Arabidopsis. Plant Cell & Environment, 46(9): 2810-2826
  • Xu H, Wang XL, Wei J, Zuo Y, Wang L*. 2023. The regulatory networks of the circadian clock involved in plant adaptation and crop yield. Plants, 12(9): 1897
  • He YQ, Yu YJ, Wang XL, Qin YM, Su C, Wang L*. 2022. Aschoff’s rule on circadian rhythms orchestrated by blue light sensor CRY2 and clock component PRR9. Nature Communications, 13: 5869
  • Wang Y#, Su C#, Yu YJ#, He YQ, Wei H, Li N, Li H, Duan J, Li B, Li JG, Davis S, Wang L*. 2022. TIME FOR COFFEE regulates phytochrome A-mediated hypocotyl growth through dawn-phased signaling. Plant Cell, 34: 2907-2924
  • Wei H, Xu H, Su C, Wang XL, Wang L*. 2022. Rice CIRCADIAN CLOCK ASSOCIATED1 transcriptionally regulates ABA signaling to confer multiple abiotic stress tolerance. Plant Physiology, 190: 1057-1073
  • Ronald J, Su C, Wang L, Davis SJ*. 2022. Cellular localization of Arabidopsis EARLY FLOWERING3 is responsive to light quality. Plant Physiology, 190: 1024-1036
  • Xu XD*, Yuan L, Yang X, Zhang X, Wang L, Xie QG*. 2022. Circadian clock in plants: Linking timing to fitness. Journal of Integrative Plant Biology, 64(4): 792-811
  • Yan JP, Li SB, Kim YJ, Zeng QN, Radziejwoski A, Wang L, Nomura Y, Nakagami H, Somers DE. 2021. TOC1 clock protein phosphorylation controls complex formation with NF-YB/C to repress hypocotyl growth. The EMBO Journal, 40: e108684
  • Wang XL#, He YQ#, Wei H, Wang L*. 2021. A clock regulatory module is required for salt tolerance and control of heading date in rice. Plant Cell & Environment, 44: 3283-3301
  • Yuan L#, Yu YJ#, Liu MM, Song Y, Li HM, Sun JQ, Wang Q, Xie QG*, Wang L*, Xu XD*. 2021. BBX19 fine-tunes the circadian rhythm by interacting with PSEUDO-RESPONSE REGULATOR proteins to facilitate their repressive effect on morning-phased clock genes. Plant Cell,33: 2602-2617
  • Zhang YY, Li N, Wang L*. 2021. Phytochrome interacting factor proteins regulate cytokinesis in Arabidopsis. Cell Reports, 35: 109095
  • Li N, Bo C, Zhang YY*, Wang L*. 2021.PHYTOCHROME INTERACTING FACTORS PIF4 and PIF5 promote heat stress induced leaf senescence in Arabidopsis. Journal of Experimental Botany, 72: 4577-4589
  • Tian WW#, Wang RY#, Bo CP, Yu YJ, Zhang YY, Shin G, Kim W, Wang L*. 2021. SDC mediates DNA methylation-controlled clock pace by interacting with ZTL in Arabidopsis. Nucleic Acids Research, 49: 3764-3780
  • Su C, Wang Y, Yu YJ, He YQ, Wang L*. 2021. Coordinative regulation of plants growth and development by light and circadian clock. aBIOTECH, 2: 179-189
  • Wang Y, Lu Z, Wang L*. 2021. Uncover the nuclear proteomic landscape with enriched nuclei followed by label-free quantitative mass spectrometry. Methods in Molecular Biology, 2297: 115-124
  • Wei H, Wang XL, He YQ, Xu H, Wang L*. 2021. Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1-mediated sodium homeostasis. The EMBO Journal, 40: e105086
  • Wei H, Wang XL, Xu H, Wang L*.2020. Molecular basis of heading date control in rice. aBIOTECH, 1: 219-232
  • Li N#, Zhang YY#, He YQ, Wang Y, Wang L*. 2020. Pseudo Response Regulators regulate photoperiodic hypocotyl growth by repressing PIF4/5 transcription. Plant Physiology, 183(2): 686-699 [下载]
  • Wang Y, He YQ, Su C, Zentella R, Sun TP, Wang L*. 2020. Nuclear localized O-fucosyltransferase SPY facilitates PRR5 proteolysis to fine-tune the pace of Arabidopsis circadian clock. Molecular Plant, 3: 446-458 [下载]
  • Wang Y#, Qin YM#,  Li B, Zhang YY, Wang L*. 2020.  Attenuated TOR signaling lengthens circadian period in Arabidopsis. Plant Signaling & Behavior, 2: e1710935 [下载]
  • Kim TS, Wang L, Kim YJ, Somers DE*. 2020. Compensatory mutations in GI and ZTL may modulate temperature compensation in the circadian clock. Plant Physiology, 2: 1130-1141 [下载]
  • Zhang YY, Bo CP, Wang L*. 2019. Novel crosstalks between circadian clock and jasmonic acid pathway finely coordinate the tradeoff among plant growth, senescence and defense. International Journal of Molecular Sciences, 20: 5254 [下载]
  • Li B#, Wang Y#, Zhang YY, Tian WW, Chong K, Jang JC, Wang L*. 2019. PRR5, 7 and 9 positively modulate TOR signaling-mediated root cell proliferation by repressing TANDEM ZINC FINGER 1 in Arabidopsis. Nucleic Acids Research, 10: 5001-5015 [下载]
  • Wang Y, Zhang YY, Wang L*. 2018. Cross regulatory network between circadian clock and leaf senescence is emerging in higher plants. Frontiers in Plant Science, 9: 700 [下载]
  • Zhang YY, Wang Y, Wei H, Li N, Tian WW, Chong K, Wang L*. 2018. Circadian evening complex represses Jasmonate-induced leaf senescence in Arabidopsis.Molecular Plant, 11: 326-337[下载]
  • Cha JY, Kim J, Kim TS, Zeng QN, Wang L, Lee SY, Kim WY, Somers DE*. 2017. GIGANTEA acts as a co-chaperone with HSP90 to facilitate maturation of the client protein ZEITLUPE in the Arabidopsis circadian clock. Nature Communications, 8: 3 [下载]
  • Wang L, Chong K*. 2016. The essential role of cytokin in signaling in root apical meristem formation during somatic embryogenesis. Frontiers in Plant Science, 6: 1196-1200 [下载]
  • Jia YB, Tian HY, Li HJ, Yu QQ, Wang L, Friml J, Ding ZJ*. 2015. The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development. Journal of Experimental Botany, 4631-4642 [下载]
  • Choudhary M, Nomura Y, Wang L, Nakagami H, Somers DE*. 2015. Quantitative circadian phosphoproteomic analysis of Arabidopsis reveals extensive clock control of key components in physiological, metabolic, and signaling pathways. Molecular & Cellular Proteomics, 14: 2243-2260 [下载]
  • Kim Y, Lim J, Yeom M, Kim H, Kim J, Wang L, Somers D, Nam H*. 2013. ELF4 regulates GIGANTEA chromatin access through subnuclear sequestration. Cell Reports, 3: 671-677 [下载]
  • Wang L, Kim J, Somers D*. 2013. Transcriptional corepressor TOPLESS comlexes with pseudoresponse regulator proteins and histone deacetylase to regulate circadian transcription. Proc. Natl. Acad. Sci. USA, 110: 761-766 [下载]
  • Zhang C, Xu YY, Guo SY, Zhu JY, Huan Q, Liu HH, Wang L, Luo GZ, Wang XJ, Chong K*. 2012. Dynamics of brassinosteroid response modulated by negative regulator LIC in rice. PLoS Genetics, 8: e1002686 [下载]
  • Wang L, Chong K*. 2010. Auxin brassinosteroids and G protein signaling. In Integrated G protein Signaling in Plants. Series of Signaling and Communication in Plants. page: 135-154 (Book chapter) [下载]
  • Wang L, Fujiwara S and Somers D*. 2010. PRR5 regulates phosphorylation, nuclear import and subnuclear localization of TOC1 in the Arabidopsis circadian clock. The EMBO Journal, 29: 1903-1915 [下载]
  • Li D, Wang L, Wang M, Xu Y, Luo W, Liu Y, Xu Z, Li J, Chong K*. 2009. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Plant Biotechnology Journal, 7: 791–806 [下载]
  • Wang L, Xu Y, Zhang C Ma QB, Kim J, Xu ZH, Chong K*. 2008. OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PLoS ONE. 3: e3521 [下载]
  • Fujiwara S#, Wang L#, Han L, Suh SS, Salomé P, McClung R, Somers D*. 2008. Post-translational regulation of the Arabidopsis circadian clock through selective proteolysis and phosphorylation of pseudo-response regulator proteins. Journal of Biological Chemistry, 283: 23073-23083 (cover story)[下载]
  • Wang L, Xu YY, Li J, Powell R, Xu ZH, Chong K*. 2007. Transgenic rice plants ectopically expressing AtBAK1 are semi-dwarfed and hypersensitive to 24-epibrassinolide. Journal of Plant Physiology, 164: 655-664 [下载]
  • Liu KM, Wang L, Xu YY, Chen N, Ma QB, Li F, Chong K*. 2007. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta, 226: 1007-1016 [下载]
  • Wang L, Xu YY, Ma QB, Li D, Xu ZH, Chong K*. 2006. Heterotrimeric G protein alpha subunit is involved in rice brassinosteroid response. Cell Research, 16: 916-922[下载]
  • Wang ZY*, Wang QM, Chong K, Wang FR, Wang L, Bai MY, Jia CG. 2006. The brassinosteroid signal transduction pathway. Cell Research, 16: 427-434 [下载]
地址:北京市海淀区香山南辛村20号     联系电话:010-62836674 京ICP备16067583号-24
传真:cuiqiang@ibcas.ac.cn     Email:cuiqiang@ibcas.ac.cn      网址:http://www.klpmp.ibcas.ac.cn/
中国科学院植物研究所植物分子生理学重点实验室    版权所有