2005年,四川农业大学获学士学位;
2009年,四川农业大学水稻所获硕士学位;
2009-至今,中国科学院植物研究所工程师、助理研究员、副研究员。
2005年,四川农业大学获学士学位;
2009年,四川农业大学水稻所获硕士学位;
2009-至今,中国科学院植物研究所工程师、助理研究员、副研究员。
主要从事植物低温感知和信号转导网络研究。利用经典遗传学和数量遗传学的手段克隆水稻低温耐寒基因和QTLs,解析其在低温胁迫中的分子功能。近年来,克隆了水稻感受低温的重要QTL基因COLD1,解析了COLD1参与粳、籼稻耐寒性分化的分子功能,揭示了赋予粳稻具有较强耐寒性的COLD1等位基因在驯化过程中受到人工选择。2021年在Cell Reports杂志上发表文章,通过多组学分析进一步发现了水稻低温感受器COLD1下游的维生素E-K1亚网络是粳、籼稻耐寒性差异形成的关键调控点,揭示了COLD1调控水稻耐寒性的新机制。
Zheng SS, Li ZT, You YP, Cao J, Luo W, Qian Q, Xu YY, Chong K*. 2025. Natural variations in the promoter of CHILLING TOLERANCE DIVERGENCE 8 contribute to the functional divergence in the Chilling tolerance of rice. Plant Cell and Environment, https://doi.org/10.1111/pce.70122
Guo XY, Luo W, Chong K*. 2024. Exploring abiotic stress resilience module for molecular design in rice. Science Bulletin, doi: https://doi.org/10.1016/j.scib.2024.11.041
Sun SL#, Liu DF#, Luo W, Li ZT, Feng JL, GuoYL, Chong K*, Xu YY*. 2024. Domestication-selected COG4-OsbZIP23 module regulates chilling tolerance in rice. Cell Reports, doi: 10.1016/j.celrep.2024.114965
Luo W, Xu YY, Cao J, Guo XY, Han JD, Zhang YY, Niu YD, Zhang ML, Wang Y, Liang GH, Qian Q, Ge S, Chong K*. 2024. COLD6-OSM1 module senses chilling for cold tolerance via 20',30'-cAMP signaling in rice. Molecular Cell, https://doi.org/10.1016/j.molcel.2024.09.031
Feng JL, Li ZT, LuoW, Liang GH, Xu YY, Chong K*. 2023. COG2 negatively regulates chilling tolerance through cell wall components altered in rice. Theoretical and Applied Genetics, 136(1):19-29
Li ZT#, Wang B#, Luo W, Xu YY, Wang JJ, Xue ZH, NiuYD, Cheng ZK, Ge S, Zhang W, Zhang JY*, Li QZ*, Chong K*. 2023. Natural variation of codon repeats in COLD11 endows rice with chilling resilience. Science Advances, 136: 1-11
Luo W#, Huan Q#, Xu YY, Qian WF, Chong K*,Zhang JY*. 2021. Integrated global analysis reveals a vitamin E-vitamin K1 sub-network, downstream of COLD1, underlying rice chilling tolerance divergence.Cell Reports,36: 109397
Yang WS, Wu K, Wang B, Liu HH, Guo SY, Guo XY, Luo W, Sun SY,Ouyang YD, Fu XD, Chong , Zhang QF*, Xu YY*. 2021. The RING E3 ligase CLG1 targets GS3 for degradation via the endosome pathway to determine grain size in rice. Molecular Plant, 14(10): 1699-1713
Li ZT, Wang B, Zhang ZY, Luo W, Tang YY, Niu YD, Chong K, Xu YY*. 2021. OsGRF6 interacts with SLR1 to regulate OsGA2ox1 expression for coordinating chilling tolerance and growth in rice. Journal of Plant Physiology, 260:153406
Ge Q#, Zhang YY#, Xu YY, Bai MY, Luo W, Wang B, Niu YD, Zhao Y, Li SS, Weng YX, Wang ZY, Qian Q, Chong K*. 2020. Cyclophilin OsCYP20-2 with a novel variant integrates defense and cell elongation for chilling response in rice. New Phytologist, 225:2453-2467
Ge Q, Tang YY, Luo W, Zhang JY, Chong K, Xu YY*. 2020. A cyclophilin OsCYP20-2 interacts with OsSYF2 to regulate grain length by pre-mRNA splicing. Rice, 13(1):64-74
Zhang JY, Luo W, Zhao Y, Xu YY, Song SH, Chong K*. 2016. Comparative metabolomic analysis reveals a reactive oxygen species-dominated dynamic model underlying chilling environment adaptation and tolerance in rice. New Phytologist, 211: 1295-1310
Ma Y#, Dai XY#, Xu YY#, Luo W#, Zheng XM, Zeng DL, Pan YJ, Lin XL, Liu HH, Zhang DJ, Xiao J, Guo XY, Xu SJ, Niu YD, Jin JB, Zhang H, Xu X, Li LG, Wang W, Qian Q, Ge S, Chong K*. 2015. COLD1 confers chilling tolerance in rice. Cell, 160: 1209-1221
Chen Y, Xu YY, Luo W, Li WX, Chen N, Dajian Zhang DJ, Chong K*. 2013. The F-box protein OsFBK12 targets OsSAMS1 for degradation and affects pleiotropic phenotypes including leaf senescence in rice. Plant Physiology, 163(4):1673-1685.
Li J, Jiang J, Qian Q, Xu Y, Zhang C, Xiao J, Du C, Luo W, Zou G, Chen M, Huang Y, Feng Yi, Cheng Z, Yuan M, Chong K*. 2011. Mutation of rice BC12/GDD1, which encodes a kinesin-like protein that binds to a GA biosynthesis gene promoter, leads to dwarfism with impaired cell elongation. Plant Cell, 23(2): 628-640
Li D, Wang L, Wang M, Xu Y, Luo W, Liu Y, Xu Z, Li J, Chong K*. 2009. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Plant Biotechnology Journal, 7: 791–806