景海春研究组
你现在所处的位置是:首页 > 基本情况 > 人员介绍 > 景海春研究组
景海春
景海春     研究员

1986年,兰州大学获理学学士学位;

1989年,兰州大学获理学硕士学位;

2004年,荷兰格罗宁根大学获理学博士学位;

1989-1996年,在天津市农业科学院土壤肥料研究所历任研究助理、副研究员、副所长;

1996-1999年,在荷兰DLO-CPRO(PRI)植物繁育系做访问学者;

2004.10-2009.6,英国洛桑研究所从事博士后研究;

2009.7到中国科学院植物研究所工作。

现任呼伦贝尔草牧业试验站站长、中国科学院生态草牧业工程实验室主任。目前指导博士后1人,在读博士生11人,硕士生6人,在Nature Plants、Genome Biology、Plant Cell、Plant Physiology、Biotechnology for Biofuels、Theoretical and Applied Genetics等主流杂志发表相关SCI论文50余篇。主持承担科技部、科学院、基金委、转基因重大专项、中外国际合作项目等40余项。2020年获得中国科学院科技促进发展奖,2024年获第5届中国科学院“科苑名匠”集体称号

联系方式:010-62836462 E-mail:hcjing@ibcas.ac.cn
  • 研究方向
研究论文
  • Li C, Wu XY, Wang PN, Wang HR., Wang LD., Sun F, Lu C, Hao HQ*, Chu CC, and Jing HC*. 2025. Genome-wide association study of image-based trait reveals the genetic architecture of dark-induced leaf senescence in rice. Journal of Experimental Botany,76(2):331-345
  • Zhang R, Lin G, Shang L, Wu XY, Liu Z Q, Xu LC, Sun Q L, Fu J Y*, Hao, HQ*, Jing HC.2024. Potential, economic and ecological benefits of sweet sorghum bio-industry in China. Biotechnology for Biofuels and Bioproducts, 17:134
  • Wang LD, Shang L, Wu XY,Hao HQ*, Jing HC*.2023. Genomic architecture of leaf senescence in sorghum (Sorghum bicolor). Theoretical and Applied Genetics, 136:45
  • Xu S, Li XQ, Guo H, Wu XY, Wang N, Liu Z Q,Hao HQ*, Jing HC. 2023. Mucilage secretion by aerial roots in sorghum (Sorghum bicolor): sugar profile, genetic diversity, GWAS and transcriptomic analysis. Plant Molecular Biology, 112: 309-323
  • Wu XY, Liu YM, Luo H, Shang L, Leng CY, Liu ZQ, Li ZG, Lu XC, Cai HW, Hao HQ*, Jing HC*. 2022. Genomic footprints of sorghum domestication and breeding selection for multiple end uses. Molecular Plant, 15:537-551
  • Liu YM#, Wang ZH#, Wu XY, Zhu JW, Luo H, Tian DM, Li CP, Luo JC, Zhao WM*, Hao HQ*, Jing HC. 2021. SorGSD: updating and expanding the sorghum genome science database with new contents and tools. Biotechnology for Biofuels, 14: 165
  • Li ZG, Li K, Yang XH, Hao HQ*, Jing HC. 2021. Combined QTL mapping and association study reveals candidate genes for leaf number and flowering time in maize. Theoretical and Applied Genetics, 134:3459–3472
  • Tao Y#, Luo H#, Jiabao Xu J#, Cruickshank A, Zhao X, Teng F, Hathorn A, Wu XY, Liu YM, Shatte T, Jordan D*, Jing HC*, Mace M*. 2021. Extensive variation within the pan-genome of cultivated and wild sorghum. Nature Plants, 7:766–773
  • Feng X#, Liu LL#,Li ZG,Sun F,Wu XY, Hao DY,Hao HQ*, Jing HC*. 2021. Potential interaction between autophagy and auxin during maize leaf senescence implicated by population genetics and high resolution gene expression profiling. Journal of Experimental Botany, 72 (10):3554–3568
  • Hao HQ*, Li ZG, Leng CY, Lu C, Luo H, Liu YM, Wu XY, Liu ZQ, Shang L, Jing HC*. 2021. Sorghum breeding in the genomic era: opportunities and challenges. Theoretical and Applied Genetics, 134:1899–1924
  • Liu ZQ#, Li HL#, Zeng XJ, Lu C, Fu JY, Guo LJ, Kimani WM, Yan HL, He ZY, Hao HQ*, Jing HC. 2020. Coupling phytoremediation of cadmium-contaminated soil with safe crop production based on a sorghum farming system. Journal of Cleaner Production, 275:123002
  • Kimani W, Zhang LM, Wu XY, Hao HQ*, Jing HC*. 2020. Genome-wide association study reveals that different pathways contribute to grain quality variation in sorghum (Sorghum bicolor). BMC Genomics, 21:112
  • Chi YH, Kimani W, Liu ZQ, Wu XY, Shang L, Zhang LM, Jing HC, Hao HQ*. 2020. Vacuolar invertase genes SbVIN1 and SbVIN2 are differently associated with stem and grain traits in sorghum (Sorghum bicolor). Crop Journal, 8:299-312.
  • Yan ZZ, Zhang XY*, Rashid MA, Li HJ, Jing HC, Hochman Z. 2020. Assessment of the sustainability of different cropping systems under three irrigation strategies in the North China Plain under climate change. Agricultural Systems, 178:102745
  • Hu ZM, Zhao Z, Zhang Y, Jing HC, Gao SQ*, Fang JY. 2019. Does 'Forage-Livestock Balance' policy impact ecological efficiency of grasslands in China? Journal of Cleaner Production, 207:343-349
  • Zhang LM, Leng CY, Luo H, Wu XY, Liu ZQ, Zhang YM, Zhang H, Xia Y, Shang L, Liu CM, Hao DY, Zhou YH, Chu CC, Cai HW*, Jing HC*. 2018. Sweet sorghum originated through selection of Dry, a plant-specific NAC transcription factor gene. Plant Cell, 30:2286-2307.
  • Chen J, Zhang L, Zhu M, Han L, Lv Y, Liu Y, Li P, Jing HC*, Cai HW*. 2018. Non-dormant Axillary Bud 1 regulates axillary bud outgrowth in sorghum. Journal of Integrative Plant Biology, 60(10):938-955
  • Luo H, Zhao WM, Wang YQ, Xia Y, Wu XY, Zhang LM, Tang BX, Zhu JW, Fang L, Du ZL, Bekele WA, Tai SS, Jordan DR, Godwin ID, Snowdon RJ, Mace ES, Luo JC*, Jing HC*. 2016. SorGSD: a sorghum genome SNP database. Biotechnology for Biofuels, 9:1-9
  • Wu XY, Hu WJ, Luo H, Xia Y, Zhao Y, Wang LD, Zhang LM, Luo JC, Jing HC*. 2016. Transcriptome profiling of developmental leaf senescence in sorghum (Sorghum bicolor). Plant Molecular Biology, 92:1-26
  • Shen X, Liu ZQ, Mocoeur A, Xia Y, Jing HC*. 2015. PAV markers in Sorghum bicolour: genome pattern, affected genes and pathways, and genetic linkage map construction. Theoretical and Applied Genetics, 128:623-637
  • Zheng LY#*, Shang L#, Chen X, Zhang LM, Xia Y, Smith C, Bevan MW, Li YH, Jing HC*. 2015. Tang1, encoding a symplekin_c domain-contained protein, influences sugar responses in Arabidopsis. Plant Physiology, 168:1000-1012
  • Mocoeur A, Zhang YM, Liu ZQ, Shen X, Zhang LM, Rasmussen SK, Jing HC*. 2015. Stability and genetic control of morphological, biomass and biofuel traits under temperate maritime and continental conditions in sweet sorghum (Sorghum bicolor). Theoretical and Applied Genetics, 128:1685-1701
  • Schippers JH#*, Schmidt R#, Wagstaff C, Jing HC*. 2015. Living to die and dying to live: the survival strategy behind leaf senescence. Plant Physiology, 169:914-930
  • Anami SE, Zhang LM, Xia Y, Zhang YM, Liu ZQ, Jing HC*. 2015. Sweet sorghum ideotypes: genetic improvement of stress tolerance. Food and Energy Security,4:3-24
  • Anami SE, Zhang LM, Yan X, Zhang YM, Liu ZQ, Jing HC*. 2015. Sweet sorghum ideotypes: genetic improvement of the biofuel syndrome. Food and Energy Security, 4:159-177
  • Zhang LM, Luo H, Liu ZQ, Zhao Y, Luo JC, Hao DY*, Jing HC*. 2014. Genome-wide patterns of large-size presence/ absence variants in sorghum. Journal of Integrative Plant Biology, 56:24-37
  • Wang TT, Ren ZJ, Liu ZQ, Feng X, Guo RQ, Li BG, Li LG*, Jing HC*. 2014. SbHKT1;4, a member of the high-affinity potassium transporter gene family from sorghum bicolor, functions to maintain optimal Na+/k+ balance under Na+ stress. Journal of Integrative Plant Biology, 56:315–332
  • Li M#, Feng S#, Wu Z, Li Y, Fan C, Zhang R, Zou W, Tu Y, Jing HC, Li S, Peng L*. 2014. Sugar-rich sweet sorghum is distinctively affected by wall polymer features for biomass digestibility and ethanol fermentation in bagasse. Bioresource Technology, 167:14-23
  • Zhang LM, Liu XG, Qu XN, Yu Y, Han SP, Dou Y, Xu YY, Jing HC*, Hao DY*. 2013. Early transcriptomic adaptation to Na2CO3 stress altered the expression of a quarter of the total genes in the maize genome and exhibited shared and distinctive profiles with NaCl and high pH stresses. Journal of Integrative Plant Biology, 55:1147-1165
  • Tahir J, Watanabe M, Jing HC, Hunter DA, Tohge T, Nunesnesi A, Brotman Y, Fernie AR, Hoefgen R, Dijkwel PP*. 2013. Activation of R-mediated innate immunity and disease susceptibility is affected by mutations in a cytosolic O-acetylserine (thiol) lyase in arabidopsis. The Plant Journal, 73:118-130
  • Wu XY, Kuai BK, Jia JZ, Jing HC*. 2012. Regulation of leaf senescence and crop genetic improvement. Journal of Integrative Plant Biology, 54:936-952
  • Zheng LY#, Guo XS#, He B#, Sun LJ#, Peng Y, Dong SS, Liu TF, Jiang S, Ramachandran S, Liu CM, Jing HC*. 2011. Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biology, 21:R114
  • Parry MA, Jing HC*. 2011. Bioenergy plants: hopes, concerns and prospectives. Journal of Integrative Plant Biology, 53:94-95
  • Shirzadian-Khorramabad R#, Jing HC#, Everts GE, Schippers JHM, Hille J, Dijkwel PP*. 2010. A mutation in the cytosolic O-acetylserine (thiol) lyase induces a genome-dependent early leaf death phenotype in Arabidopsis. BMC Plant Biology, 10:80
  • Jing HC*, Bayon C, Kanyuka K, Berry S, Wenzl P, Huttner E, Kilian A, Hammond-Kosack KE*. 2009. DArT markers: diversity analyses, genomes comparison, mapping and integration with SSR markers in Triticum monococcum. BMC Genomics, 10:458
  • Hofinger BJ, Jing HC, Hammond-Kosack KE, Kanyuka K*.2009. High-resolution melting analysis of cDNA-derived PCR amplicons for rapid and cost-effective identification of novel alleles in barley. Theoretical and Applied Genetics, 119:851-865
  • Jing HC, Hebeler R, Oeljeklaus S, Sitek B, Stuehler K, Meyer HE, Sturre MJG, Hille J, Warscheid B, Dijkwel PP*. 2008. Early leaf senescence is associated with an altered cellular redox balance in Arabidopsis cpr5/old1 mutants. Plant Biology, 10:85-98
  • Jing HC, Dijkwel PP*. 2008. CPR5: A Jack of all trades in plants. Plant signaling & behavior, 3:562
  • Jing HC, Lovell D, Gutteridge R, Jenk D, Kornyukhin D, Mitrofanova OP, Kema GH, Hammond‐Kosack KE*. 2008. Phenotypic and genetic analysis of the Triticum monococcum–Mycosphaerella graminicola interaction. New Phytologist, 179:1121-1132
  • Jing HC, Anderson L, Sturre MJ, Hille J, Dijkwel PP*. 2007. Arabidopsis CPR5 is a senescence-regulatory gene with pleiotropic functions as predicted by the evolutionary theory of senescence. Journal of Experimental Botany, 58:3885-3894
  • Jing HC, Kornyukhin D, Kanyuka K, Orford S, Zlatska A, Mitrofanova OP, Koebner R, Hammond-Kosack K*. 2007. Identification of variation in adaptively important traits and genome-wide analysis of trait–marker associations in Triticum monococcum. Journal of Experimental Botany, 58:3749-3764
  • Schippers JH, Jing HC, Hille J, Dijkwel PP*. 2007 Developmental and hormonal control of leaf senescence. Senescence processes in plants, 145-170
  • Jing HC#, Schippers JH#, Hille J, Dijkwel PP*. 2005. Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. Journal of Experimental Botany, 56:2915-2923
  • Jing HC. 2005. Regulation of leaf senescence in Arabidopsis: isolation and characterisation of onset of leaf death mutants. University Library Groningen, 115:281-293
  • Jing HC, Hille J, Dijkwel PP*. 2003. Ageing in plants: Conserved strategies and novel pathways. Plant Biology, 5:455-464
  • Jing HC, Sturre MJ, Hille J, Dijkwel PP*. 2002. Arabidopsis onset of leaf death mutants identify a regulatory pathway controlling leaf senescence. The Plant Journal, 32:51-63
  • 高树琴, 王竑晟, 段瑞, 景海春, 方精云*. 2020. 关于加大在中低产田发展草牧业的思考. 中国科学院院刊, 35(2):166-174
  • 高树琴, 胡兆民, 韩勇, 刘智全, 潘庆民, 段瑞, 钟瑾, 景海春*. 2019. 生态草牧业在我国精准扶贫中的作用和潜力——中国科学院植物研究所科技扶贫实践与模式探索. 中国科学院院刊, 34(2):223-230
  • 方精云*, 景海春, 张文浩, 高树琴, 段子渊, 王竑晟, 钟瑾, 潘庆民, 赵凯, 白文明, 李凌浩, 白永飞, 蒋高明, 黄建辉, 黄振英. 2018.论草牧业的理论体系及其实践. 科学通报, 63(17):1619-1631
  • 薛勇彪, 种康, 韩斌, 桂建芳, 景海春. 2018. 创新分子育种科技支撑我国种业发展. 中国科学院院刊, 33(9):893-897
  • 郝怀庆, 刘丽丽, 姚远, 冯雪, 李志刚, 晁青, 夏然, 刘宏涛, 王柏臣, 秦峰, 谢旗, 景海春. 2018. 分子模块设计育种技术在玉米育种中的应用及前景展望. 中国科学院院刊, 33(9):923-931
  • 景海春*, 刘智全, 张丽敏, 吴小园. 2018. 饲草甜高粱分子育种与产业化. 科学通报, 63:1664-1676
  • 方精云*, 潘庆民, 高树琴, 景海春, 张文浩. 2017. “以小保大”原理:用小面积人工草地建设换取大面积天然草地的保护与修复. 草业科学, 33(10):1913-1916
  • 罗洪, 张丽敏, 夏艳, 吴小园, 王聪, 刘智全, 景海春*. 2015. 能源植物高粱基因组研究进展.科技导报, 16:17-26
  • 张丽敏, 刘智全, 陈冰嬬, 郝东云, 高士杰, 景海春*. 2012. 我国能源甜高粱育种现状及应用前景.中国农业大学学报, 17:78-82



地址:北京市海淀区香山南辛村20号     联系电话:010-62836674 京ICP备16067583号-24
传真:cuiqiang@ibcas.ac.cn     Email:cuiqiang@ibcas.ac.cn      网址:http://www.klpmp.ibcas.ac.cn/
中国科学院植物研究所植物分子生理学重点实验室    版权所有