
Abstract Glycinebetaine is an important quaternary am-
monium compound that is produced in response to salt
and other osmotic stresses in many organisms. Its syn-
thesis requires the catalysis of betaine aldehyde dehydro-
genase encoded by BADH gene that converts betaine al-
dehyde into glycinebetaine in some halotolerant plants.
We transformed the BADH gene, cloned from Atriplex
hortensis and controlled by two 35S promoters of the
cauliflower mosaic virus, into a salt-sensitive tomato
cultivar, Bailichun, using Agrobacterium tumefaciens
strain LBA4404 carrying a binary vector pBin438, and
using a leaf regeneration system. Polymerase chain reac-
tion and Southern hybridization analyses demonstrated
that the BADH gene had integrated into the genome of
tomato. Transgenic tomato plants showed significantly
higher levels of mRNA and BADH enzyme activity than
wild-type plants. Observations on rooting development
and relative electronic conductivity suggested that the
transgenic plants exhibited tolerance to salt stress, with
these plants growing normally at salt concentrations up
to 120 mM.
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Introduction

Plants are often exposed to various adverse environmental
stresses such as drought, salinity, and high and low tem-
peratures. Salinity is one of the major factors that limit the
geographical distribution of plants and is responsible for
significant reductions in the yield and quality of many im-
portant crops (Boyer 1982). Plants utilize a number of
protection mechanisms to maintain normal cellular metab-
olism and prevent damage to cellular components (Wood
et al. 1996). One common metabolic adaptation to salinity
stress is the accumulation of osmoprotectants. One of
these osmoprotectants, glycinebetaine, is a bipolar quater-
nary ammonium compound accumulated in many plant
species (Rhodes and Hanson 1993). Glycinebetaine pro-
tects the cell from salt stress by maintaining an osmotic
balance with the environment (Robinson and Jones 1986)
and by stabilizing the quaternary structure of complex
proteins (Bernard et al. 1988; Papageorgiou and Murata
1995). In photosynthetic systems, glycinebetaine stabiliz-
es the oxygen-evolving photosystem II complex (Murata
et al. 1992) and Rubisco at elevated salt concentrations.

In plants, glycinebetaine is synthesized by the two-
step oxidation of choline in the chloroplast (Hanson et
al. 1985). The first step is catalyzed by choline mono-
oxygenase (CMO) (Brouquisse et al. 1989); the second
by betaine aldehyde dehydrogenase (BADH) localized in
the chloroplasts (Weigel et al. 1986). The BADH gene
has been cloned from Spinacia oleracea (Weretilnyk and
Hanson 1990), Atriplex hortensis (Xiao et al. 1995), Beta
vulgaris (McCue and Hanson 1992), Sorghum bicolor
(Wood et al. 1996), and Avicennia marina (Hibino et al.
2001) and is well characterized. However, many test re-
sults have demonstrated that some plant species, such as
Arabidopsis thaliana, tobacco, and tomato, do not accu-
mulate glycinebetaine (Weretilnyk et al. 1989; Rhodes
and Hanson 1993; Nuccio et al. 1998). This has led to
great interest in the metabolic engineering of the gly-
cinebetaine biosynthesis pathway as an approach for en-
hancing salt stress resistance in salt-sensitive species
(LeRudulier et al. 1984; McCue and Hanson 1990).
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Nomura et al. (1995) postulated that the introduction
of exogenous genes related to the synthesis of glycinebe-
taine into salt-sensitive crops would lead to the accumu-
lation of glycinebetaine and an improvement in their tol-
erance to salt stress. To date, several genes catalyzing the
synthesis of glycinebetaine, such as CMO from spinach,
CodA from Arthrobacter globiformis, BADH from spin-
ach or sugar beet, and BetA and BetB from Escherichia
coli, have been introduced into different plants 
(Rathinasabapathi et al. 1994; Hayashi et al. 1997;
Holmstrom 1998; Nuccio et al. 1998; Sakamoto et al.
1998). The transgenic plants produced minimal glycine-
betaine but, in some cases, showed small but significant
increases in tolerance to salt or other stresses (Nuccio et
al. 1999). In a previous investigation, we introduced the
BADH gene from Atriplex hortensis into watercress (Li
et al. 2000). The transgenic watercress plants grew nor-
mally on medium containing 100 mM NaCl and survived
on medium containing 160 mM NaCl.

Tomato is a vegetable crop grown world wide. Most
of its cultivars are moderately sensitive to salt, with yield
being seriously limited by the salinity of the soil or irri-
gating water (Cuartero and Munoz 1999; Foolad 1999).
Extensive work has been done on breeding for enhanced
tolerance to salinity and identifying quantitative trait lo-
ci-associated markers to enhanced tolerance and yield
under stress. However, there have been very few reports
published on the metabolic engineering of salt tolerance
of tomato. As a non-accumulator of glycinebetaine, to-
mato has no glycinebetaine synthesis pathway (Were-
tilnyk et al. 1989). In the investigation reported here, we
established a regeneration system from leaves of Bailic-
hun, a salt-sensitive tomato cultivar, most of whose
plants can not withstand the stress of 90 mM salt, and in-
troduced the BADH cDNA cloned from Atriplex horten-
sis (Xiao et al. 1995) to allow the biosynthesis of gly-
cinebetaine.

Materials and methods

Plant materials

Seeds of tomato (Lycopersicon esculentum Mill cv. Bailichun) ob-
tained from the Chinese Academy of Agricultural Science (CAS)
were surface-sterilized for 1.5 min in 70% ethanol, then 15 min in
0.1% HgCl2, followed by three washes in sterile distilled water.
They were then germinated on a hormone-free MS (Murashige
and Skoog 1962) basic medium with 2.0% sucrose, 0.7% agar,
pH 5.8, in 200-ml plastic culture boxes (Jiana Corporation, Shang-
hai, China) at 25°C and under a 12/12-h (light/dark) photoperiod
(light intensity: 150 µmol m–2 s–1).

Callus initiation and shoot regeneration

Discs of cv. Bailichun leaves were dissected from 20- to 30-day-
old sterile seedlings and cultured on the induction medium (IM)
(MS + 0.2 mg/l IAA + 2.0 mg/l BA + 0.1 mg/l ZT) for callus in-
duction and shoot regeneration. They were transferred to fresh IM
medium every 20 days until shoot regeneration occurred. Shoots
(2–3 cm long) were excised and transferred to root induction me-
dium (RM) (MS + 0.5 mg/l IAA) for rooting. Culture conditions
for tissue culture were the same as for germination.

Agrobacterium-mediated transformation and selection 
of transgenic shoots

Agrobacterium tumefaciens strain LBA4404 carrying pBin438
(size: 13 kb) (Tian et al. 1991) with the BADH structural gene
from Atriplex hortensis and selection marker NPTII (Fig. 1) was
provided generously by Prof. Chen-Shouyi (Institute of Genetics,
Chinese Academy of Sciences, CAS).

A. tumefaciens in YEB medium were cultured overnight at
28°C, with shaking at 220 rpm, until the OD560 reached 0.5. Ace-
tosyringone was added with continued shaking for 2–3 h. Before
transformation, the bacterial suspension was diluted to 1/10 with
liquid hormone-free MS medium. Leaf discs were immersed in the
bacterial suspension for 5 min immediately after excision and then
blotted with sterile filter paper. The inoculated leaf discs were co-
cultured on IM medium in darkness for 48 h followed by transfer
to selective induction medium (SIM) (IM + 500 mg/l carbenicillin
+ 50 mg/l kanamycin) for shoot differentiation. Differentiated
shoots were transferred to selective rooting medium (SRM) (RM +
200 mg/l carbenicillin + 50 mg/l kanamycin).

DNA extraction and polymerase chain reaction

Nuclear DNA of the wild-type and transgenic plants was prepared
by the simplified CTAB method (Murray and Thompson 1980).
The PCR procedure was performed as followed. DNA (0.5 µl) was
added to a final volume of 25 µl with 0.2 µM of each primer,
0.2 mM each of dNTP, and 1 U Taq DNA polymerase. The reac-
tion consisted of 35 cycles of 1.0 min at 95°C for denaturation,
1.0 min at 45°C for annealing, and 1.5 min at 72°C for extension.
The two primers for Atriplex hortensis BADH gene were: 5′-AG-
AATGGCGTTCCCAATTCCTGCTC-3′ and 5′-TTCAAGGAG-
ACTTGTACCATCCCCA-3′ (Xiao et al. 1995).

Southern and Northern hybridization

The probe used for Southern and Northern hybridizations was the
1.5 kb BamHI-KpnI BADH cDNA fragment from the cloning vec-
tor plasmid (Fig. 1) labeled with α-[32P]-dCTP via the Random
Primer DNA labeling system (Takara Biotechnology. China). Ge-
nomic DNA (20 µg) isolated from leaves was digested with re-
striction endonucleases HindIII and EcoRI, respectively, separated
on a 1.0% (w/v) agarose gel by electrophoresis, and transferred
onto a Hybond-N+ nylon membrane (Amersham Pharmacia Bio-
tech, Buckinghamshire, UK). Hybridization was carried out as fol-
lowing standard procedures (Sambrook et al. 1989).

Total RNAs were extracted from young leaves by the Trizol
(GibcoBRL, Gaithersburg, Md.) one-step method (following man-
ufacturer’s instructions), denatured with formaldehyde and form-
amide, and subjected to electrophoresis on 1.2% (w/v) agarose
gels. The separated RNAs were transferred to a Hybond-N+ nylon
membrane and hybridized with the same probe and following the
same procedure as that used in the Southern hybridization.
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Fig. 1 Construction of the binary vector plasmid vector pBin438
that carries the BADH gene. RB Right border, LB left border,
NPTII neomycin phosphotransferase, 35S cauliflower mosaic vi-
rus 35S promoter, Ω TMV translation enhancer, UTT termination
sequence of transcription, nos nopaline synthase terminator



BADH activity and the REc assay of transgenic plants

Transgenic lines were propagated and rooted on SIM and SRM
medium, then transplanted into a mixture of soil and vermiculite
(1:1) in pots in the greenhouse, and watered with MS nutritional
solution. NaCl at 0 mM and 180 mM was added into the nutrition-
al solution to stress the plants for 24 h until they grew to the four-
to six-leaf stage. The third leaves from the top down were used for
the BADH activity and REc assays. BADH activity was measured
according to Guo et al. (1997), with one unit of BADH activity
defined as consuming 1 nmol/l NAD per minute in the reaction
volume (nmol min–1 mg–1 protein) (Guo et al. 1997). Each mea-
surement was repeated three times.

REc was tested using a HI9033 conductivity meter (HANNA,
Italy) according to Leopold and Toenniessen (1984). The wild-
type and transgenic lines were stressed with 0 mM, 90 mM,
180 mM, and 270 mM NaCl for 24 h.

Results and discussion

Regeneration and selection of transgenic shoots

In earlier investigations, the explants used for tomato re-
generation and transformation were usually cotyledons
and hypocotyls or surface-sterilized leaf discs (Roekel et
al. 1993; Costa et al. 2000). We established a regenera-
tion system for cv. Bailichun using leaf discs from sur-
face-sterilized seedlings. To determine the intrinsic kana-
mycin resistance, we placed untransformed leaf discs on
SIM media; all of these turned yellow within 2 weeks
and ultimately died (Fig. 2A). Among the 333 inoculated
leaf discs, 77 began to produce callus and shoot primor-
dia from the excision cuts 18 days post-inoculation on
SIM medium (Fig. 2B), which then differentiated into
green shoots or leaf-like bodies after 40 days (Fig. 2C).
When the shoots were 2–3 cm long, they were excised
and transplanted to SRM medium for rooting. All of
these potentially transgenic shoots survived and rooted
normally after 5–8 days, and their roots had reached a
length of 2.0 cm or longer 8–10 days later. There were
no apparent phenotypic differences between the wild-
type and transgenic plants.

Integration and expression of the BADH gene 
in transgenic tomato

To eliminate the potential for false positives arising from
persistent Agrobacterium, we surface-sterilized explants
of these potentially transgenic shoots and put them on
carbenicillin-free SIM medium. No Agrobacterium ap-
peared on this medium after 10 days or longer. PCR
analysis detected a 1.5-kb band in 6 of the 11 shoots ob-

tained from the SRM medium, while none of the wild-
type seedlings showed this band (Fig. 3A). Subsequent
Southern analysis (Fig. 3B) with the α-[32P]-dCTP-
labeled probe showed excellent consistency with PCR
results. The results from these two separate analyses
demonstrated that the BADH gene had been integrated
into the genome of these six transgenic lines.

Levels of BADH transcripts were found to increase al-
most twofold in leaves of salt-stressed spinach plants and
almost three- and fourfold in the taproots and leaves of
sugar beet, respectively (Weretilnyk and Hanson 1990;
McCue and Hanson 1992). The accumulation of BADH
mRNA levels from barley plants exposed to salt stress in-
creased up to eightfold in the leaves, and these levels de-
creased when the stress was attenuated (Ishitani et al.
1995). Moreover, the increases in BADH mRNA levels
also occurred when the barley plants were subjected to
drought and water stresses, a result consistent with previ-
ous findings (Arakawa et al. 1992a, b). The results of
these studies indicate that betaine accumulation in salt-
stressed plants is regulated (at least in part) via changes in
the expression of the genes of the betaine biosynthetic
pathway and that the BADH gene probably has stress re-
sponsive cis regulatory elements (Rathinasabapathi et al.
1997). These may be essential to reproduce the natural
pattern of stress-induced glycinebetaine accumulation in
engineered crops (Rathinasabapathi et al. 1997). In our
investigation, the BADH gene was introduced with the
CaMV 35S promoter that can promote the expression of
genes constitutively and a non-salt inducible Ω enhancer.
Transcripts of the BADH gene were detectable no matter
whether salt stress was present or not, but the expression
levels were different among different transgenic lines
(Fig. 3C). This phenomenon has been generally ascribed
to different integration sites of the transgenes into the
plant genome in each independent transformant (position
effect) (Guo et al. 1997; Liu et al. 1997; Li et al. 2000;
van Leeuwen et al. 2001). We did not find any transcript
signal in line 2 and supposed that transgene silencing
may have occurred (Chandler and Vaucheret 2001).

BADH activity and salt tolerance of the transgenic plants

BADH activity was not detectable in wild-type plants
under either the NaCl-free condition or under NaCl
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Fig. 2A–C Selection of BADH transformed tomato callus and
shoots. A Untransformed leaf discs that have died on SIM medi-
um, B antibiotic-resistant callus initiated on SIM medium, C anti-
biotic-resistant shoots on SIM medium



(180 mM) stress conditions. As illustrated in Fig. 4, un-
der normal conditions the transgenic plants tested exhib-
ited varying levels of BADH activity, and when they
were stressed by 180 mM NaCl this activity increased
approximately 2.4- to 3.2-fold. Similar results were
found in tobacco (Holmstrom et al. 1994) and Synecho-
coccus (Nomura et al. 1995).

The status of the cell membrane is related to the func-
tion of the whole cell and whole plants. Membrane per-
meability has been thought to be an important index of
the physiological function of the cell. Adversities such as
drought, salinity, and high and low temperatures initially
damage the structure of the cell membrane, thereby af-
fecting its function; this leads to an increase in mem-
brane permeability, which results in leakage of the intra-
cellular contents. By minimizing other factors affecting
the growth of plants, it is possible to assess the degree of
damage of the membrane by measuring the REc or leak-
age rate of macromolecules under a certain kind of stress
(Leopold and Toenniessen 1984; Guo et al. 1997; Liu et
al. 1997). In our investigation, small differences in REc
were detected among plants of the wild-type and differ-
ent transgenic lines when watered with MS nutritional
solution without NaCl supplementation (Fig. 5); the REc
increased in both wild-type and transgenic plants when
NaCl was added to the MS nutritional watering solution.
The REc values of all of the transgenic lines under

90 mM and 270 mM NaCl stress were significantly low-
er than that of the wild type (Fig. 5). These results sug-
gest that the integration of BADH cDNA resulted in gly-
cinebetaine biosynthesis in cv. Bailichun. The resultant
glycinebetaine and its protective effects on the photo-
system and enzymes could enhance the stability of the
proteins and membranes of plant cells in adverse envi-
ronments (Csonka 1989; Yi et al. 1999).

Figure 6A shows the effects of salt stress on the
growth of shoots in MS medium. The wild-type and
transgenic shoots were placed on RM medium contain-
ing 90 mM NaCl. All of the transgenic shoots rooted
normally 8–10 days later, while the wild type ceased to
grow, turned yellow after about 1 week, and ultimately
died. Rooted transgenic plants were transplanted to pots,
grew well while watered with a MS nutritional solution
supplemented with 90 mM NaCl, and produced fruit nor-
mally 2 months later (Fig. 6B). Most of the transgenic
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Fig. 3A–C Molecular assay of transformed tomato shoots. A PCR
analysis. WT Wild-type plants, M λ-DNA/EcoRI+HindIII marker,
lanes 1–10 ten independent transformant lines. B Southern hybrid-
ization analysis with the α-[32P]-labeled BADH cDNA probe. Nu-
clear DNA was digested with HindIII or EcoRI restriction en-
zymes, respectively. C Northern hybridization analysis with α-
[32P]-labeled BADH cDNA probe

Fig. 4 BADH activity in cv. Bailichun wild-type (WT) and trans-
genic (L1, L3, L5, L8, L9) tomato lines under standard watering
conditions and salt stress. The results are expressed as averages 
(± standard errors) from three independent experiments

Fig. 5 Effects of NaCl on plasmalemma permeability of cv. Ba-
ilichun wild-type (WT) and transgenic (L1, L3, L5, L8, L9) tomato
lines. The results are expressed as averages (± standard errors)
from three independent experiments

Fig. 6A, B Salt tolerance of transgenic lines. A Shoots of trans-
genic lines (left two) rooted normally on RM medium containing
90 mM NaCl, while the control (right two) could only form a
swelling. B Bailichun transgenic plants produced fruit under
90 mM NaCl stress



plants maintained a normal growth when the concentra-
tion of NaCl supplemented to the nutritional solution
was increased to 120 mM during the vegetative stage.

Most reports available on the metabolic engineering
of salt tolerance improvement are focused on tobacco
and crops of the grass family, and there are still very few
reports on vegetables. Introduction of the glycinebetaine
biosynthesis pathway by introducing the BADH gene
cloned from different plants (Rathinasabapathi et al.
1994; Guo et al. 1997; Liu et al. 1997; Trossat et al.
1997; Li et al. 2000) or the CodA, BetA, or B genes that
encode a bifunctional enzyme in bacterium (Lamark et
al. 1991; Hayashi et al. 1997; Sakamoto et al. 1998) has
increased the salt tolerance of the resultant transgenic
plants. One problem with glycinebetaine engineering is
that the inadequacy of the endogenous choline supply is
usually a limiting factor in the accumulation of glycine-
betaine in tobacco, Arabidopsis thaliana, and Brassica
napus (Nuccio et al. 1998; Huang et al. 2000). This calls
for an up-regulated de novo synthesis of choline (Nuccio
et al. 1998) and metabolic engineering of the choline-
betaine network using a systematic approach (Huang et
al. 2000).

Improving salt tolerance of plants by metabolic engi-
neering is still a challenge. To date, commercialized salt-
tolerant transgenic vegetable crops with a high genetic sta-
bility have not been reported because of gene silencing and
transgene loss at a high frequency in progenies of transgen-
ic plants. We are continuing to study the genetic stability of
BADH transgenic tomato and attempting multi-gene trans-
formation to improve the salt tolerance of tomato.
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