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a b s t r a c t 

Gas chromatography-mass spectrometry (GC-MS) is a robust analytical platform for analysis of small 

molecules. Recently, it is widely used for large-scale metabolomics studies, in which hundreds or even 

thousands of samples are analyzed simultaneously, producing a very large and complex GC-MS datasets. 

A number of software are currently available for processing GC-MS data, but it is too compute-intensive 

for them to efficiently and accurately align chromatographic peaks from thousands of samples. Here, we 

report a newly developed software, QPMASS, for analysis of large-scale GC-MS data. The parallel comput- 

ing with an advanced dynamic programming approach is implemented in QPMASS to align peaks from 

multiple samples based on retention time and mass spectra, enabling fast processing large-scale datasets. 

Furthermore, the missing value filtering and backfilling are introduced into the program, greatly reducing 

false positive and false negative errors to be less than 5%. We demonstrated that it took only 8 h to align 

and quantify a GC-TOF-MS dataset from 300 rice leaves samples, and 17 h to process a GC-qMS dataset 

from 10 0 0 rice seed samples by using a personal computer (3.70 GHz CPU, 16 GB of memory and > 

100 GB hard disk). QPMASS is written in C ++ programming language, and is able to run under Windows 

operation system with a user-friendly interface. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Metabolomics analysis of genetic population or natural popu-

ation of crop cultivars are effective in identification of metabolic

uantitative trait loci (mQTLs) that control metabolite contents

nd their related agronomical traits [1–4] . Typically, hundreds

r even thousands of biological samples are analyzed in these

GWAS (metabolic genome-wide association studies) and mQTLs

tudies. Since gas chromatography-mass spectrometry (GC-MS) is

 robust analytical platform with higher sensitivity and resolution,

t has been widely applied in metabolomics analysis [5] . GC-MS

nalysis typically generates many fragment ions for each analytic

ompound, which makes the tasks of sample deconvolution and

eak alignment very challenging. Thus the processing of GC-MS

ata is generally great sophisticated and time-consuming. So far,
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any software have been developed for analysis of GC-MS data

 Table 1 ). Some software like AMDIS [6,7] , MetaboliteDetector [8] ,

DAP [9–12] , PyMS [13] , MS-DIAL [14] , and ChromaTOF (LECO,

t. Joesph MI, USA) were developed for peak deconvolution.

mong them, AMDIS is widely used for the deconvolution of

C-quadrupole MS (GC-qMS) data, while ChromaTOF is more

ften used for deconvolution of gas chromatography time-of-flight

ass spectrometry (GC-TOF-MS) data. 

Another challenging issue in GC-MS analysis is about retention

ime drift. To solve this issue, some different strategies are applied

n various software such as ADAP [9–12] , PyMS [13] , MS-DIAL [14] ,

CMS [15,16] , MathDAMP [17] , TagFinder [18] , TargetSearch [19] ,

etAlign [20,21] , flagme [22] , and ChromAlignNet [23] . The non-

inear retention time alignment method (the observed deviation

sually changes over time in a nonlinear mode within a sample,

nd these changes are fitted using a local polynomials regression

tting method-loess) is used to correct the retention time drift in

CMS [15] . Dynamic time warping (DTW) with an explicitly speci-

ed time shift is used for the alignment of datasets in MathDAMP,

https://doi.org/10.1016/j.chroma.2020.460999
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chroma
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Table 1 

Summary of software for analyzing GC-MS data. 

No. Name Algorithm Import data format Description Citation times 

1 XCMS (CLI) [15,16] Non-linear retention time alignment is 

used to correct for retention time drift 

NetCDF; mzXML;MzData; 

mzML 

Large-scale GC-MS data analysis, but it 

producing highly redundant datasets 

2488 � 

2 AMDIS (GUI) [6,7] The model peak method is used for 

peak deconvolution; signal to noise 

values is used to distinguish signal 

from noise at low signal levels 

Almost all of GC-MS data 

format 

Spectra deconvolution and metabolites 

identification, but peak alignment 

seems not be performed 

695 � 

3 MetAlign (CLI) [20,21] Two modes of alignment (rough and 

iterative alignment) are used 

Masslynx .raw; mzData; 

Xcalibur .raw; NetCDF;mzXML; 

Agilent .d 

Data pre-processing and peak 

alignment; the maximum number of 

files that can be processed in one 

session is 1000 

492 � 

4 TagFinder (GUI) [18] Linear interpolation between retention 

time anchors to calculate retention 

index; Pearson/ Spearman correlation 

is applied to find correlated clusters 

of tags 

MetAlign output;NetCDF Alignment of large GC-MS data into 

data matrix, but peak smooth and 

baseline correction are not available, 

and software download is not 

available currently as the link to the 

download page is missing 

335 

5 MCR (GUI) [38] Batch modeling is used to study the 

dynamic behavior of the resolved 

metabolites over time 

NetCDF; CSV Processes all samples simultaneously 

and identify mass spectra of 

overlapping peaks, but it is sensitive 

to the number of co-analyzed files 

309 

6 MS-DIAL (GUI) 

[14] 

MS 2 Dec algorithm based peak 

deconvolution, least squares 

optimisation is used to extract model 

peaks from chromatograms 

Analysis Base File (ABF) 

format; MzML; AB Sciex 

(.Wiff); Thermo Fisher 

Scientific (.RAW); Agilent 

Technologies (.D); Waters 

(.RAW); Bruker Daltonics (.D) 

Peak deconvolution, peak alignment 

and compound identification 

288 

7 MET-IDEA (CLI) [39,40] A calculated fixed value correction or 

a linear correction is applied to 

correct retention time 

AMDIS .elu; NetCDF Target metabolome analysis, an input 

list of Ion-retention time pair (IRt) list 

is required 

198 � 

8 Metabolite Detector 

(GUI and CIL) [8] 

A five point cubic Savitzky-Golay filter 

is applied to smooth spectral; 

deconvolution is performed using an 

improved algorithms applied by Colby 

et al. and Stein; a Gaussian function is 

used for the RI based similarity index 

calculation; chromatographs are 

aligned by retention time 

NetCDF; JEOL FastFlight2 Data deconvolution and alignment, 

but it relies on QT4 based graphical 

user interface to ensure compatibility 

of cross platform 

196 

9 MathDAMP (CLI) [17] Dynamic time warping (DTW) with an 

explicitly specified time shift function 

is used to align data 

ChemStation .ms;mzXML; 

netCDF; Analyst .csv 

Visualization and identification of 

differences between complex 

metabolite profiles, but the current 

release lacks of quantification function 

112 

10 TargetSerach (GUI and 

CIL) [19] 

Peak apex intensities are used for 

peak picking; retention time index 

(RI) is used to retention time 

alignment 

NetCDF Data pre-processing and metabolites 

identification 

96 

11 ADAP (CLI) [9–12] k -medoids clustering analyses (ADAP 

1.0), model peak approach (ADAP 2.0 

and 3.0) and multivariate curve 

resolution (ADAP-4.0) are applied to 

deconvolute coeluting components; 

extracted ion chromatograms (EIC) 

based two-phase approach is used for 

peak alignment 

NetCDF Peak deconvolution and alignment; it 

represents the solution to metabolites 

co-eluting analysis. 

88 � 

12 MetaQuant (GUI) [41] A mixture of internal standards with 

known concentrations are used to 

solve the integrals of the 

corresponding peaks in the spectra, 

then peak areas and the known 

substance concentrations are used for 

regression analysis; retention indices 

is used to minimize retention time 

shift 

NetCDF; CSV Target metabolome analysis, accurate 

quantification of GC-MS data, but a 

compound library is required 

44 

13 ChromaTOF (GUI) 

LECO, St. Joseph, MI, 

USA 

Without published algorithm 

descriptions 

Leco file formats Spectra deconvolution and metabolites 

identification, it is developed 

especially for the dataset from its own 

GC-TOF-MS instrument 

38 ∗

14 PyMS (CLI) [13] Moving-average and Savitzky-Golay 

filters are used for noise filter; 

dynamic programming is used for 

peak alignment 

ANDI-MS/NetCDF; JCAMP-DX Peak deconvolution and quantitation; 

dynamic programming based peak 

alignment; Message Passing Interface 

(MPI) based parallel data processing 

31 

( continued on next page ) 
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Table 1 ( continued ) 

No. Name Algorithm Import data format Description Citation times 

15 ChromAli gnNet (CLI) 

[23] 

Pairwise comparisons and hierarchical 

clustering algorithm is used to group 

peaks 

csv Peak alignment 0 

16 flagme (CLI) [22] A similarity matrix is calculated based 

on a scoring function; dynamic 

programming is used for peak 

alignment 

AMDIS .elu; NetCDF Dynamic programming-based 

alignment strategy and data 

visualization 

NP 

GUI: Graphical user interface; CLI: Command line interface. 

Citation times are obtained from "Web of Science" ( http://isiknowledge.com ) at the time of writing (2019/10/29) by searching correspongding references or key words ( ∗); 

� : the citation times are the sum of the citations of corresponding references; NP: the corresponding reference was not found. 

#: stands for import data formats of AMDIS including NetCDF, Agilent files, Bruker files, Agilent MS Engine files, Finnigan GCQ files, Finnigan INCOS files, Finnigan ITDS files, 

INFICON files, Micromass files, JEOL/Shrader file, Kratos Mach3 file, Xcalibur Raw file, MassLynx NT file, Shrader/GCMate file, Shimadzu MS files, PerkinElmer files, Varian MS 

files, Varian XMS file, Varian SMS file. 
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s  
n which a representative set of peaks is used to align all datasets

17] . The peak alignment is performed also based on a reference

eak list in MS-DIAL [14] . The retention time of internal substances

s used to calculate retention index (RI) using linear interpolation

etween retention time anchors in TagFinder. The calculated RI

nd mass spectra are used to sort mass fragments, and then the

ass fragments of same compound across all samples are binned

nd aligned into the mass tags, which are grouped into different

ime groups using the RI slide windows. Pearson/Spearman cor-

elation is applied to find correlated clusters of tags in the time

roups [18] . In TargetSearch, RI is used to align peaks against the

etention time [19] . The rough and iterative alignment are applied

n MetAlign. In the rough mode, mass peaks are grouped within

 user defined time window, which then slide through the time

imension of all datasets to be aligned; the iterative alignment

ode uses the same algorithm as that in the rough mode, and

t applies the iterative calculation of retention time difference

egard to the landmarks (the peaks that present in all datasets are

hosen as landmarks). The iterative calculation will stop when the

liding time window is in the order of a mass peak width [20] .

wo-phase approach based on extracted ion chromatograms (EIC)

or peak alignment is provided in ADAP. In phase 1, mass spectra

orresponding to the same component among all the samples are

dentified. The phase 2 is the refinement of phase 1, and it is

sed to find the best representative spectra across all the samples

9] . In ChromAlignNet, all pairs of qualified peaks are firstly

ompared to get a set of groups, and then hierarchical clustering

s implemented for group assignment [23] . Dynamic programming

ethod that is widely used for the alignment of DNA sequences

24] is also proposed for alignment of LC-MS data [25] and GC-MS

ata [26,27] . In this approach, the similarity of each pairs of peaks

re calculated based on the retention time and mass spectra. The

lobal alignment is built progressively, starting with two most

imilar peak lists in the similarity tree derived from the pair-wise

lignments. In the case of more than one experiments with multi-

le replicates are conducted, the replicate experiments are aligned

rstly ("within-state alignment"), and then the within-state align-

ents are aligned ("between-state alignment") progressively

26] . This approach is employed in flagme [22] , and PyMS [13] .

lthough these software have their own special algorithms, it

till inconvenient for them to analyze large-scale datasets, con-

idering the complexity, computational costs and misalignment

ate [26,28,29] . For example, it took nearly 91 h for MetAlign to

lign 940 GC-TOF-MS samples [20] and the alignment accuracy of

etAlign in aligning standard compounds mixture was 74% [29] . 

The search results on “Web of Science” database showed that

CMS and MetAlign were the most frequently used software to

rocess large-scale GC-MS data ( Table 1 ). However, XCMS and

etAlign were originally developed for analysis of LC-MS data

26,28] . Being oriented toward the detection of single ion peaks,

hese software tend to over-interpret GC-MS data [13,26] . There
ave been some attempts to assemble these individual ion signals

nto fragmentation characteristic mass spectra, but this process is

idely considered to be extremely challenging [18,30] . Meanwhile,

he maximum number of files that could be processed in one

ession of MetAlign was 10 0 0 [20] . The available computing power

ould be a bottleneck for XCMS to process a large amount of

atasets [13] . 

Selection of the best quantitative ion (quant ion) is a critical

tep in GC-MS data analysis, and there are many strategies for

uant ions selection in existing software. For example, ADAP and

etaboliteDetector are tend to choose those most intense and

nique (not shared with neighbor peaks) ion as quant ions [8,9] .

n PyMS, a single ion shared in all peaks in a certain time from N

bundant ions in the alignment results is chosen [13] . In flagme,

he intensity of all ions corresponding to a peak are calculated

22] . Peak quantification could sometimes be based on different

uant ions for the same peak in different samples, making con-

atenation and comparison of metabolite levels between samples

ifficult. Taken together, it has become apparent that there are

ritical limitations of available algorithms and software tools for

he analysis of ultra large metabolomics datasets, and it is neces-

ary to develop a new software suitable for efficiently analyzing

oth GC-qMS and GC-TOF-MS data. 

Here we report a newly developed program, QPMASS, for re-

earchers in multiple disciplines to easily analyze their ultra-large

C-MS datasets for mGWAS, mQTLs and many other studies. In

his software, the parallel computing with an advanced dynamic

rogramming approach, a three-parameter strategy for selection

f optimal quant ions, as well as missing value filtering and

ackfilling are implemented to rapidly and accurately alignment

nd quantification of large-scale datasets. QPMASS is written in

 ++ programming language, and able to run under commonly

sed Windows operation system. It accepts the popular raw data

ormat of netCDF or mzXML from GC-TOF-MS and GC-qMS, as well

s the peak deconvolution results from AMDIS or ChromaTOF. 

. Materials and methods 

.1. Chemicals and reagents 

Methanol, chloroform and water (HPLC grade) were purchased

rom Fisher Scientific (Hampton, NH). Pyridine, N-Methyl-N-

trimethylsilyl) trifluoroacetamide (MSTFA) reagent, methoxy- 

amine hydrochloride, the internal standard compounds of adonitol

nd nonadecanoic acid, and the authentic standard compounds

ere all purchased from Sigma-Aldrich. 

.2. Samples preparation 

The authentic standard compounds were prepared as 2 mM

tock solutions (dissolved in HPLC grade water), except L-tyrosine

http://isiknowledge.com
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and L-serine were prepared as 400 μM stock solutions. Mixtures of

these compounds at certain concentrations were then prepared as

detailed in Supplementary Table 1 [31] (adonitol was used as inter-

nal standard [32–34] and its concentration was kept constant in all

samples). These mixtures were referred to as the artificial sample

group A and B (Asa and Asb). Each group contained six samples.

Equal volume of each sample were mixed as the quality control

(QC) sample. 100 μL of the mixed QC sample, three blank samples

(100 μL HPLC grade water with same concentration of adonitol as

that in other samples was set as blank sample), and twelve arti-

ficial samples (Asa and Asb) were dried in a rotary vacuum evap-

orator without heating. The dried residues were oximated with

40 μL methoxylamine hydrochloride (20 mg/mL) in anhydrous

pyridine at 37 °C for 2 h, and then silylated at 37 °C for 30 min

with 70 μL MSTFA. The derivatized samples were then transferred

into 250 μL glass vials (Agilent) for GC-TOF-MS analysis. 

Leaves of rice cultivars [35] were harvested at 60 days after

sowing. Each sample had two biological replicates. The lyophilized

leaves were ground into powder with a mixer mill (Retsch Mixer

Mill MM 400). Metabolites extraction was prepared as previously

described [36] . 1 mL methanol/chloroform/water = 2.5:1:1 (v/v/v)

with internal standard of adonitol was added to 20 mg of powder.

The same volume of extracting solution and internal standard

was used as blank sample. Metabolites were extracted in a shaker

(220 rpm) at 37 °C for two hours, followed by centrifugation at

12,0 0 0 rpm for 10 min. 700 μL of supernatant was transferred

into a new tube. 1 mL of methanol/chloroform = 1:1 (v/v) (non-

adecanoic acid as internal standard) was used to suspend the pre-

cipitate, and followed by extracting in a shaker (220 rpm) at 37 °C
for one hour. After being centrifuged (12,0 0 0 rpm, 10 min), 700 μL

supernatant was transferred into above new tube. 350 μL distilled

water was added, which was used to separate chloroform phase

from methanol/water phase. The sample was centrifuged for 2 min

at 5,0 0 0 rpm. Finally, 20 0 μL methanol/water phase and 200 μL

chloroform phase were transferred into 250 μL glass vials (Agi-

lent), separately. Both methanol/water phase and chloroform phase

were then dried and dissolved in 50 μL methoxylamine hydrochlo-

ride (20 mg/mL, pyridine), and incubated at 37 °C for two hours

with continuous shaking. Then 80 μL MSTFA was added, and the

samples were incubated at 37 °C for 30 min with continuous shak-

ing. Derivatized samples were stored at room temperature for two

hours before GC-TOF-MS analysis to ensure complete derivation. 

The lyophilized seeds of 500 rice japonica varieties were ground

into powder with a mixer mill. 100 mg powder were weighted,

and each sample had two biological replicates. Metabolites extrac-

tion was the same as above, then the extracts were analyzed by

GC-qMS. 

2.3. GC-TOF-MS and GC-qMS analysis 

The GC-TOF-MS system was composed of an Agilent 6890 (Ag-

ilent Corporation, USA) gas chromatograph and a LECO Pegasus IV

time-of-flight mass spectrometer (LECO Corporation, USA). 1 μL of

each derivatized sample was injected into the gas chromatograph

equipped with a 30 m × 0.25 mm I.D. fused silica capillary column

with a chemically bonded 0.25 μm DB-5 MS stationary phase (J&W

ScientiWc, USA). The injector temperature was at 280 °C. The flow

rate of helium gas through the column was 1 mL/min. The column

temperature was held at 60 °C for 1 min, and then elevated to

220 °C at a rate of 5 °C/min, and held there for 2 min. The temper-

ature was then elevated to 310 °C at a rate of 15 °C/min, and held

there for 2 min. The transfer line and ion source temperatures

were at 280 °C and 200 °C, respectively. Ions were generated by a

70 eV electron beam, and 20 spectra per second were recorded in

the 50–600 m/z mass range. The acceleration voltage was turned

on after a solvent delay of 300 s. The detector voltage was 1670 V.
The samples of rice seeds were analyzed using an Agi-

ent 5977A MS coupled to Agilent 7890B GC instrument under

lectronic impact at 70 eV with an Agilent DB-5 HT column

30 m × 0.32 mm × 0.1 μm). The oven temperature was initially

et at 70 °C, and then was raised from 70 °C to 290 °C (10 °C/min),

nd maintained there for 4 min. The temperature was then el-

vated from 290 °C to 310 °C (20 °C/min), and hold there for

0 min. The injection volume was 1 μL. 

.4. Data deconvolution and export 

The raw data was deconvoluted by ChromaTOF using the fol-

owing settings: the baseline was set to 1, the smoothing threshold

as set to 7, and the signal-to-noise value was set to 10. The

xported .csv files of deconvolution results contained peak name,

etention time, quant mass, peak area, and relative mass spectra

Supplementary Table 2). The .csv and .cdf files were imported into

PMASS for alignment and quantification. The parameters used

n QPMASS were setting as follows: mZMin = 50, mZMax = 700,

econvolution data type = .csv, top_n = 20, slaveCounts = 1,

aw data type = netCDF, gap = 0.08, cutoff(s) = 6, peakthresh-

ld = 0.15, mzthreshold = 0.01, backfill = 1, dtRange(s) = 0.1,

imThreshold = 0.4, areaTol = 0.15. The Automated Mass Spectral

econvolution and Identification System (AMDIS, Version 2.62,

IST, US) was also used to deconvolute peaks, but we did not use

he library matching function of AMDIS. While running AMDIS

oftware, “Shape requirements” was set to “Medium”, “Sensitivity”

as also set to “Medium”, the “Type of analysis” parameter was

et to “Simple”, “Adjacent Peak Subtraction” was set to “One”, and

he “Component width” was set to 32. The obtained .elu result

les were aligned using the R package “flagme”. The key alignment

arameters used in flagme were set as following: wn.gap = 0.5,

n.D = 0.05, bw.gap = 0.06, and bw.D = 0.02. The quantitative

ccuracy of QPMASS was compared with XCMS and ChromaTOF. In

CMS, the ion peak detection method was “centWave”, “S/N value”

as set to 50, “peakwidth” was set to 3–10, and the “nearest

ethod” was used for grouping peaks. 

. Theory 

In order to shorten the time for processing large-scale datasets,

he parallel computing with an advanced dynamic programming

pproach, which is based on Robinson’s dynamic programming

lgorithm research [26] is implemented in QPMASS to align peaks

rom multiple samples. To reduce both false positive and false

egative errors, the missing value filtering and backfilling are

ntroduced into QPMASS. Moreover, a three-parameter strategy

s developed for the selection of optimal quant ions for peak

uantification. 

The workflow of QPMASS includes seven main steps ( Fig. 1 ).

1) Files import. QPMASS requires both deconvoluted peak data

nd raw data, which can be submitted through the deconvolution

ata path and mzXML path/cdf path, respectively. QPMASS will

rocess peak firstly if the raw mzXML or netCDF files are used,

hereas the deconvolution data can be directly used for aligning

eaks. (2) Sample distribution. All samples are divided into subsets

ccording to a preliminary hierarchical clustering analysis. (3) Peak

lignment. QPMASS implements a parallel computing method for

ligning peaks. The alignment results (aligned mass spectra) can

e used to identify metabolites using the NIST spectral search

ngineer/database. (4) Raw data pre-processing. The raw data is

re-processed prior to peak integration through baseline correc-

ion, smoothing, and denoising. (5) Quantitative ion selection.

he alignment results are then used in the selection of quant

ons for peak quantification. Quant ions are selected based on

hree key data characteristics, including peak shape, peak-to-peak



L. Duan, A. Ma and X. Meng et al. / Journal of Chromatography A 1620 (2020) 460999 5 

Fig. 1. Workflow of QPMASS for processing GC-MS data. Arabic numbers stand for 

the processing steps of QPMASS. 
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eparation, and ion intensity. (6) Missing value filtering and back-

lling. QPMASS can backfill (integrate) peak area values for each

f missing data in each sample. (7) Files export. QPMASS mainly

xports the aligned mass spectra, the aligned retention time, and

he quantified peak area data. 

. Results 

.1. Sample distribution and parallel peak alignment 

Prior to peak alignment, the samples are split into subsets that

ill be processed by different computer threads. In QPMASS, the

amples are split into subgroup according to the similarity as-

essment results from a furthest-neighbor joining clustering based

ierarchical clustering method, in which samples are grouped

nto the allotted number of subsets based on their closeness of

lustering. With this method, the number of samples in each

ubset corresponds to the total number of samples are divided by

he number of available processing threads. 

In QPMASS, the peak alignment is essentially based on Robin-

on’s dynamic programming algorithm research [26] ( Fig. 2 A). The

eak similarity function P(i,j) ( Eq. (1 )) gives the similarity score

etween the mass spectra of peaks i and j. S(i,j) is calculated as

he cosine of angle between the vectors of two mass spectra ( Eq.

2) ). The retention time tolerance parameter “D” can be modulated

sing the selected weight given to retention time in total similarity

atching. A gap (match-to-nothing) is defined as a missing value

n an alignment. Peaks that cannot be aligned (corresponding to a

ap) are designated with a value of “NA” (missing value). The gap

enalty is set as a parameter “G ”. It is possible to deploy dynamic

rogramming to find the global solution and achieve an optimal

lignment of all peaks. W(i,j) ( Eq. (3) ) is used to find the global

olution (i.e., to align) of two alignments such as M-alignment

nd N-alignment, where I is the indicator function and P is given

y Eq. (1) . Finally, the score matrices ( Eq. (3) ) and the trace back
esulting from the application of dynamic programming are used

o deduce the optimal alignment. 

The parallel alignment approach implemented in QPMASS

reatly accelerates the processing speed. In QPMASS, parallel peak

lignment starts from aligning samples within each subset, fol-

owed by aligning consensus samples (subset reference) from dif-

erent subsets, which is derived from the average mass spectra and

etention time in each subset. The final alignment result is a com-

ination of all subsets based on the alignment results of consensus

amples. For example, six samples were divided into two subsets

ccording to hierarchical clustering analysis. S1, S2 and S3 were

n subset1, the others in subset2. In the alignment procedure, the

eaks in each subset were aligned separately, then the consensus

eaks for each subset (subset1 reference, and subset2 reference)

ere produced based on the average mass spectra and retention

ime of all the samples in each subset. The alignment result of

ll consensus samples, which was global reference, was used to

ombine the subset results in the final alignment results ( Fig. 2 B). 

.2. Quantitative ion selection 

To ensure accurate quantitation of peaks in different samples

nd give a better basis for quant ion selection, we developed

 three-parameter strategy for the selection of optimal quant

ons. According to this strategy, the peak-to-peak separation, peak

hape, and ion intensity were all taken into consideration. In

ontrast, the ion with highest intensity in a well separated peak is

hosen as quant ion in other software. 

The three parameters used for selecting of quant ions include

ion intensity”, “height_ratio ”, and “sum_ratio ”. Fig. 3 A shows a

imulation of an extracted-ion chromatogram for two peaks, which

s used to illustrate the principle of quant ion selection in QPMASS.

or ion intensity, QPMASS sets a parameter “top_n” for n number

f the highest intensity ions from an aligned mass spectra. Using

/z 73 as an example, m represents the position of peak apex; r

nd l are the right and left borders of the peak, respectively; H

s the intensity of the ion at the apex; h r is the intensity of the

on at the right border; h l is the intensity of the ion at the left

order; and h i is the intensity of ion at some point between l

nd r . “height_ratio ” is the ratio of the intensities of an ion at the

ight and left borders to the intensity of ion at the apex, which is

sed to assess the overlapping situation between adjacent peaks

 Eq. (4) ). The larger the “height_ratio ” is, the greater the degree of

eak overlapping. “sum_ratio ” is the average ratio of the intensity

f an ion at each scan in the peak interval to the intensity of the

on at the apex ( Eq. (5) ), representing the degree of sharpness

f peak shape; the smaller this value is, the sharper the peak is.

n optimal quant ion should have a smaller height_ratio firstly,

hen a smaller sum_ratio . If an optimal quant ion cannot be found

y assessing the first two parameters, the ion with the highest

ntensity will be chosen. 

.3. Missing value filtering and backfilling 

AMDIS and ChromaTOF often yield many false positive de-

onvolution results [37] . Some of these specious, false positive

eaks are only present in a small number of samples, and cannot

e aligned in most samples. In QPMASS, a user defined filtering

arameter called “peakThreshold” is used to filter these peaks.

or example, if the "peakThreshold" is set to 80%, peaks that are

ot present in 80% of the samples (in a processing subset) are

emoved from the alignment results. The filtering parameter of

peakThreshold" is only applied at the level of a subset in the

arallel alignment routine. After filtering the specified percentage

f putative false positive peaks using the "peakThreshold" param-

ter, there typically still exists large number of missing values
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Fig. 2. A diagram of using dynamic programming and parallel peak alignment in QPMASS. (A) Diagram of using dynamic programming for peak alignment. The left panel 

shows the matched peaks after peak alignment. There are eight and seven peaks detected in sample 1 and 2, respectively. Except the red peak in sample 1, others can 

be aligned within two samples. The right panel is the score matrix for the peak alignment of two samples. The legend color corresponds to the similarity value of mass 

spectra, and the two axes refer to the detected peaks in sample 1 and 2. (B) A diagram of parallel peak alignment in QPMASS. S1-S6 represent six samples, and m1-m9 

are the detected peaks in these samples. Subset1 reference and subset2 reference are the consensus samples derived from the average mass spectra and retention time of 

all the samples in subset1 and subset2, respectively. Global reference is the alignment result of these two consensus samples (subset1 reference and subset2 reference). 

The final alignment result is the combination of each subset alignment result based on the global reference result. Peaks and characters in red indicate peaks that only 

detected in subset1; in green mean peaks only exited in subset2; and in blue represent the peaks shared by both two subsets. Dash line means the peak was missing in the 

corresponding sample. 
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Fig. 3. The alignment and quantification ability of QPMASS. (A) The three-parameter strategy for selection of the quantitative ions. Lines in different colors represent ions 

that are selected as the top " n " ions with high intensity from the alignment results. " m " is the position of the peak apex; " r " and " l " are the right and left borders of 

the peak; " i " is a specified point of the peak. (B) Comparison of alignment accuracy between QPMASS and flagme. Peaks detected in twelve artificial samples and four QC 

samples were aligned in this procedure. "total error rate" is the sum of misalignment rate and the rate of missing value. (C-E) The correlation of peak areas obtained from 

QPMASS, XCMS and ChromaTOF. The average abundance of each peaks among four QC replicates were used to compare the quantification performance of the above three 

software. 
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n the alignment results (false negative), which might actually

orrespond to peaks that are genuinely present in some samples.

ackfilling of missing data is considered to be necessary for robust

tatistical analysis [15] . and it has been used in some software, like

CMS, in which the quant ion from the aligned results is used to

etrieve and integrate the area for missing peaks [15] . In QPMASS,

or missing peaks, mass spectra of the quant ion is used to search

eaks with high similarity within defined range of the retention

ime, and then the area of the missing peak is estimated, so that

oth quantitative backfill and qualitative judgment can be ensured.

n this procedure, the parameter "simThreshold" is used to define

he similarity of the mass spectra. QPMASS could export either

ackfilled or non-backfilled quantification results. The combination

f filtering and backfilling can partially eliminate false positives,

nd fill in the majority of missing values. 

.4. Assessment of alignment accuracy and quantification 

erformance 

To validate the alignment and quantification accuracy of QP-

ASS, two groups of artificial samples (ASa and ASb), representing

wo types of biological samples, were prepared by mixing twenty-
ix standard compounds (Supplementary Table 1). Equal volume

f each of the ASa and ASb samples were mixed to generate a

quality control” (QC) sample that was the representative of whole

etabolite pool. This QC sample was analyzed for four times with

C-TOF-MS. Additionally, manual extraction of exact retention

ime and mass spectra for each constituent compounds of ASa

nd ASb samples were determined by analyzing each compound

ndividually with GC-TOF-MS. 

We assessed various existing software, and found it difficult

o directly compare QPMASS with them. Since AMDIS, ADAP, MS-

IAL are specialized in peak deconvolution [6,9,12,14] . MS-DIAL

nd MathDAMP require a reference library [14,17] . MathDAMP is

ack of quantification function [17] . TagFinder and TargetSearch

eed retention time index information [18,19] . ChromAlignNet

ay highly demand of computer memory [23] . MCR is sensitive

o co-analyzed files [38] . Furthermore, a few of them are mainly

or target metabolome analysis [39–41] . And some software are

urrently not available as the link to the download page is missing

13,18,20] . So we mainly compared the alignment performance of

PMASS with flagme, because flagme used the same dynamic pro-

ramming method for peak alignment. XCMS is a popular software

or single ion alignment, and has a good quantitation perfor-
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mance, which has been widely used in GC-MS analysis [42–44] .

ChromaTOF is another widely used quantitation software for GC-

OF-MS data. So we compared XCMS (R version) and ChromaTOF

with QPMASS to evaluate the quantitation accuracy of QPMASS. 

We used “total error rate” to evaluate the alignment perfor-

mance of QPMASS and flagme. The term of “total error rate” is

defined as the ratio of number of missing and misaligned peaks

to the total number of detected peaks. Too many missing values

is a serious problem in the GC-MS data alignment process, which

strongly affects the subsequent multivariate statistical analysis.

ADMIS and ChromaTOF often deconvolute a peak into multiple

similar mass spectra components. In our results, the ion signals for

the reference standard compound of glycine in ASa1 (Supplemen-

tary Fig. 1A) and ASa2 (Supplementary Fig. 1B) were deconvoluted

by ChromaTOF into four components, respectively (Supplementary

Fig. 1C–1J). Components N153 (Supplementary Fig. 1D) and N155

(Supplementary Fig. 1F) in the ASa1 sample and components N148

(Supplementary Fig. 1H) and N149 (Supplementary Fig. 1I) in the

ASa2 sample all had very similar mass spectra and very close

retention time. Although components N153 and N155 were both

from glycine, they were aligned as two individual peaks. Likewise,

the glycine deconvolution components N148 and N149 in sample

ASa2 were also aligned as two separate peaks. In other samples

in the ASa series (e.g. ASa3, ASa4), glycine was deconvoluted as a

single peak. This discrepancy leads to a situation where ASa3 and

ASa4 had missing values (filled by "NA") for the "doubled" glycine

peaks of ASa1 and ASa2 (Supplementary Table 3). It is difficult for

most of the software to discriminate this situation. We used back-

filling approach to re-integrate the missing values ("NA"). When

QPMASS alignment was performed without backfilling, the total

error rate was 30.58%, while the total error rate for flagme was

40.18%. After backfilling by using QPMASS, the total error rate was

dramatically reduced to 3.79% ( Fig. 3 B, Supplementary Data Sets

1), while the process of backfilling is not available in flagme. Mul-

tiple deconvoluted peaks that correspond to a single compound

will have the same area values and can thus be detected easily in

the result tables (Supplementary Table 3). Specious components

such as component N147 (Supplementary Fig. 1G) in the ASa2

sample had high noise signals and could not be aligned with other

samples. These peaks could be filtered with the “peakThreshold”

parameter. 

In some cases, some components with similar mass spectra

but large different in retention time, might be incorrectly aligned

as the same peak. QPMASS used a peak retention time threshold

parameter "cutoff(s)" to prevent the alignment of distant peaks.

“cutoff(s)” values are typically 6-10 seconds. The values for this

parameter should be chosen based on user’s knowledge of the

retention time shift and instrumental conditions. Misalignment

errors are most likely to occur in sugars like glucose, fructose

and galactose (Supplementary Data Sets 1). Such sugars generally

generate multiple derivatization peaks, and their mass spectra are

very similar to those of other sugars. In our test, the misalignment

error rate of flagme was 18.53%, whereas the misalignment error

rate of QPMASS was 3.79% ( Fig. 3 B). This reduction in the error

rate resulted from using the "cutoff(s)" filter in QPMASS. However,

the percentage of "NA" values in QPMASS was greater than that in

flagme as a result of using this filter parameter ( Fig. 3 B). 

The quantification performance of QPMASS was compared with

XCMS (R version) and ChromaTOF. Since it was difficult to select

the same quantitative ions that used in flagme, so we could not

directly compare the quantitative accuracy with flagme. We ad-

dressed this discrepancy by manually specifying which ion peak to

use in ChromaTOF and XCMS. Except for the peaks with misalign-

ment errors, the peak areas from the QPMASS peak integration

all showed good correlation ( r 2 > 0.99) with the peak areas from

ChromaTOF and XCMS ( Fig. 3 C–3E, Supplementary Data Sets 2). 
.5. Assessment of computing speed for processing large-scale 

atasets 

During our test period, flagme failed to complete the process-

ng of the above mentioned artificial samples under Windows

peration system due to limited computing resources. Thus we

witched to a powerful Linux system (a dual-core CPU server with

51 GB of memory). As a result, flagme still spent one hour and

7 min to process these samples. Similarly, a much longer time

as needed for ChromaTOF. By contrast, QPMASS completed it

n few minutes in a personal computer (Intel Xeon E3-1230 V2

ith 16 GB of memory). So in the assessment speed of QPMASS

n processing metabolomics data, we mainly compared with XCMS

R version) using data of GC-TOF-MS (LECO) and GC-qMS (Agilent)

rom different number of plant samples. For GC-TOF-MS data,

ll the samples were deconvoluted by ChromaTOF. The .cdf files

ere imported into XCMS for quantification and alignment, while

oth .csv and .cdf files were used to align and quantify peaks in

PMASS. The task of aligning 50 samples using XCMS took nearly

12 min under an Intel Xeon E3-1230 V2 with 16 GB of memory,

hile QPMASS could finish this task in only six minutes. When

he number of samples increased to 200, XCMS needed almost

8 h to align these samples, whereas QPMASS only needed nearly

 hours ( Fig. 4 A). Furthermore, it only needed nearly 17 hours for

PMASS to process GC-qMS data of 10 0 0 samples, whereas XCMS

nly processed about 400 samples within the same time ( Fig. 4 B). 

. Discussion 

So far, the existing software for analyzing GC-MS data are quite

imited in their capability to process large numbers of samples.

CMS is one of the most frequently used software for metabolite

rofiling. In our study, it took almost 18 hours to analyze 200

C-TOF-MS samples using XCMS ( Fig. 4 A). With the increasing of

he number of samples, the processing time increased exponen-

ially, making the analysis of very large datasets untenable. The

ewly developed QPMASS software, is designed with the analysis

f very large datasets in mind, which acquires significant advan-

ages in both speed and capability to handle large-scale GC-MS

ata from different sources. QPMASS achieves ideal results by

mploying parallel computing approach to align multiple samples,

hree-parameter strategy for identification of suitable quantitative

ons for accurate quantification, and the missing value filtering

nd backfilling to reduce the alignment errors. 

The major challenge for aligning peaks is how to deal with false

ositive peaks and missing values. Any error introduced during

revious peak detection will further worsen the alignment step

ater [26] . False positive peaks in alignment results are frequently

elated to the chemical contaminates and various noise signals.

arge numbers of false positive peaks will cause severe problems

uring peak alignment, yielding unexpected results with many

issing values. The number of false positive peaks needs to be

liminated in some other way, such as manual inspection of data.

PMASS can filter missing values automatically and thus reduce

he number of specious peaks and retain the peaks present in the

ajority of samples. The combination of filtering and backfilling

an partially eliminate false positives and fill in the majority of

issing values. Although QPMASS used a state-of-the-art algo-

ithm for peak alignment, there was still 3.79 % misalignment error

ate in our tested examples ( Fig. 3 B). We checked these errors

ut individually, and found that most of mismatches occurred in

he alignment of peaks came from sugars such as glucose, lyxose,

alactose and fructose (Supplementary Data Sets 1). In contrast,

he amino acid and fatty acid peaks were markedly less prone

o have alignment errors. The main reason for this discrepancy

s that the structures of sugars are quite similar, as well as their
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Fig. 4. The comparison of processing time of QPMASS and XCMS. (A) The processing speed for processing GC-TOF-MS data by using XCMS and QPMASS. (B) The processing 

speed for processing GC-qMS data by using XCMS and QPMASS. Lines in blue indicate the processing time by using XCMS; lines in red indicate the processing time by using 

QPMASS. 
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etention time and mass spectra. To solve this problem, we used

ethoxiamine in pyridine to treat samples in the first step of

wo-step derivatization method. This will beneficially keep sugars

n open conformations in order to minimize the total number of

onformational states and relieve steric hindrances for silylation,

ut there are still multiple derivative peaks with this method

45] . It is difficult for any peak alignment algorithm to distinguish

hese highly similar peaks. One possible solution is to control the

erivatization conditions and GC conditions to reduce or separate

hese peaks. Using standards to compare the retention time and

ass spectra is another good solution. 

In QPMASS, before peak alignment, samples were divided into

ubsets according to their similarity. We had used it to process a

arge number of samples in mQTLs and mGWAS studies, and we

id not find substantial misalignment in our result, which may

e due to that highly genetically related samples were used in

ur studies. However, there will have some problems sometimes,

specially when a few samples differ greatly from others. In this

ase, grouping samples based on different condition (experiment

esign) may achieve better alignment. We will introduce a new

odule of artificial grouping in the next version of QPMASS. 

. Conclusions 

The newly developed QPMASS is specially designed for peak

lignment and quantification for large-scale GC-TOF-MS and

C-qMS datasets, which show high computing performance

nd can rapidly and automatically process large-scale GC-MS

etabolomic datasets used in mQTL and mGWAS studies. For

rief manual of how to use QPMASS, please see the user manual.

PMASS is available for academic and non-commercial use at

tp://download.big.ac.cn/QPmass/QPmass _ V1.0.zip . 
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 (i, j) = 

∑ M 
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a =1 P ( p ia , q jb ) ∑ M 

b=1 

∑ N 
a =1 I 

[
P ( p ia , q jb ) > 0 

] (3) 

eight _ ratio = 

h r 

H 

+ 

h l 

H 

(4) 

um _ ratio = 

∑ r 
i = m 

h i 
H 

+ 

∑ m 

i = l 
h i 
H (5) 
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