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Abstract

Brassinosteroids (BRs) regulate rice plant architecture, including leaf bending, which affects grain yield. Although BR signaling
has been investigated in Arabidopsis thaliana, the components negatively regulating this pathway are less well understood.
Here, we demonstrate that Oryza sativa LEAF and TILLER ANGLE INCREASED CONTROLLER (LIC) acts as an antagonistic
transcription factor of BRASSINAZOLE-RESISTANT 1 (BZR1) to attenuate the BR signaling pathway. The gain-of-function mutant
lic-1 and LIC–overexpressing lines showed erect leaves, similar to BZR1–depleted lines, which indicates the opposite roles of LIC
and BZR1 in regulating leaf bending. Quantitative PCR revealed LIC transcription rapidly induced by BR treatment. Image
analysis and immunoblotting showed that upon BR treatment LIC proteins translocate from the cytoplasm to the nucleus in a
phosphorylation-dependent fashion. Phosphorylation assay in vitro revealed LIC phosphorylated by GSK3–like kinases. For
negative feedback, LIC bound to the core element CTCGC in the BZR1 promoter on gel-shift and chromatin
immunoprecipitation assay and repressed its transcription on transient transformation assay. LIC directly regulated target
genes such as INCREASED LEAF INCLINATION 1 (ILI1) to oppose the action of BZR1. Repression of LIC in ILI1 transcription in
protoplasts was partially rescued by BZR1. Phenotypic analysis of the crossed lines depleted in both LIC and BZR1 suggested
that BZR1 functionally depends on LIC. Molecular and physiology assays revealed that LIC plays a dominant role at high BR
levels, whereas BZR1 is dominant at low levels. Thus, LIC regulates rice leaf bending as an antagonistic transcription factor of
BZR1. The phenotypes of lic-1 and LIC–overexpressing lines in erect leaves contribute to ideal plant architecture. Improving
this phenotype may be a potential approach to molecular breeding for high yield in rice.
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Introduction

Brassinosteroids (BRs) are plant steroid hormones that have been

used to increase the yield of crops [1,2]. BRs function in multiple

developmental and physiological processes, including vascular

differentiation, reproductive development, photomorphogenesis,

and stress responses [3–5]. BR-deficient and -insensitive mutants

show dwarfism, dark-green leaves, reduced fertility, and altered

photomorphogenesis in the dark [6–9]. In rice (Oryza sativa), leaf-

angle response to BRs is a specific physiological process. For

example, the erect leaves of BR-deficient rice allow for greater

growth density and higher grain yield [10]. Thus, analysis of genes

involved in rice BR signaling could shed light on the molecular

mechanisms of BR-regulated growth in monocots and help identify

feasible approaches to increase rice yield by genetic engineering.

The BR signaling pathway has been well studied in Arabidopsis.

Most of the signaling components of this pathway, from the BR

receptor BRI1 and co-receptor BAK1 to nuclear transcription

factors BZR1 and BES1/BZR2, have been identified [11,12].

During the early events of BR signaling, BRI1 perceives BRs, thus

inducing dissociation of the inhibitory protein BKI1, which results

in association with and transphosphorylation of the co-receptor

BAK1 [13–17]. BR signal kinases (BSKs) mediate signal transduc-

tion from BRI1 to BSU1 phosphatase through association with and

phosphorylation of BSU1 [18]. BSU1 positively regulates BR

signaling by dephosphorylating the negative regulator BR-insensi-

tive 2 (BIN2). This process facilitates accumulation of unpho-

sphorylated BZR1 and BES1/BZR2 in the nucleus [19–23], which

directly or indirectly activate the expression of BR-responsive genes

and regulate plant growth [21,24,25]. BZR1 is also responsible for

the negative feedback of BR biosynthetic genes such as CPD by

directly repressing transcription [26]. BZR1 and BES1 are major

transcription factors in the BR signaling pathway [27]. BZR1 binds

to the BR-responsive element (BRRE, CGTGT/CG) and mainly

represses gene expression. BES1 binds to E-box by interacting with

BIM1 or MYB30 to promote target gene expression [28–30]. BZR1

could also bind to E-box and BES1 to BRRE, so the functions of the

family members may overlap [31,32]. These are key transcription

factors activating the BR signaling pathway in plants. Phosphatase

2A (PP2A) dephosphorylates BZR1 and also BRI1 in mediating BR

signaling. BRI1 degradation depends on PP2A–mediated dephos-

phorylation that is specified by methylation of the phosphatase, thus
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leading to the termination of BR signaling [33–35]. However, how

BR signals are repressed at the transcriptional level to elicit a ‘‘turn-

off’’ pathway is less well known.

Rice, as a model monocot plant and one of the major crops, has

been used to study the BR action mechanism. Both rice and

Arabidopsis share primary BR biosynthesis and signal transduction

pathways. A series of Arabidopsis orthologs of biosynthetic genes

identified in rice include D2, D11, BRD1, BRD2, and CPD [36–38].

However, only a few members in the BR primary signaling pathway

have been reported [39–41]. OsBRI1 and OsBAK1 are cell-surface

receptor kinases that perceive BR signals. Os GLYCOGEN

SYNTHASE KINASE 1 (OsGSK1), an ortholog of AtBIN2, is a

negative regulator of rice BR signaling. Although the direct targets

of BZR1 and BES1 have been identified in Arabidopsis, only a few

targets have been identified in rice [31,32]. The transcription factor

OsBZR1, the closest ortholog of both BZR1 and BES1, has similar

functions as its Arabidopsis orthologs [42]. OsBZR1 translocated

from the cytoplasm to the nucleus in response to BR treatment in a

process mediated by 14-3-3 proteins [42–44]. A pair of antagonizing

HLH/bHLH factors, INCREASED LEAF INCLINATION (ILI1)

and ILI1 BINDING bHLH (IBH1), function downstream of

OsBZR1 to regulate cell elongation and lamina joint bending

[45]. These studies suggest a conserved BR signaling mechanism in

rice and Arabidopsis. BZR1 is a key component of the transcription

pathway that activates BR signaling in both species. However, how

to halt BR signaling at the node of transcription factors including

BZR1 remains unclear.

A CCCH-type zinc finger protein, LEAF AND TILLER

ANGLE INCREASED CONTROLLER (LIC) is involved in

sterol homeostasis in rice [10]. Here, we studied the phenotypes of a

rice LIC gain-of-function mutant lic-1 and LIC-overexpressing rice

lines to explore a novel mechanism of BR signaling. Both groups

showed erect leaves and reduced BR sensitivity as compared with

antisense lines. LIC was further characterized as an antagonistic

transcription factor of BZR1 in regulating rice architecture. Fur-

thermore, LIC is phosphorylated by GSK1/BIN2 (GSK3-like

kinases), which affect translocation from the nucleus to cytoplasm.

LIC may mediate a novel mechanism that represses the BR

signaling pathway.

Results

LIC Truncation Results in Erect Leaves in Rice
A T-DNA insertion line of lic-1 was obtained from the Rice

Mutant Database (http://rmd.ncpgr.cn) [46]. Molecular analysis

revealed that the T-DNA was inserted in the eighth exon near the 39

terminus of LIC and was predicted to cause the deletion of 110

amino acids (Figure 1A and Figure S1A). The inserted gene encodes

a truncated LIC protein containing the CCCH DNA binding

domain, EELR activation domain and the putative phosphorylation

sites (Figure S1B and S1C).

Segregation analysis of the heterozygous lic-1 with molecular

evidence revealed an approximate 3:1 (76/24) ratio of lic-1

mutants to the wild-type, which indicates that lic-1 is a dominant

mutant. The crossed progenies of lic-1 and the LIC antisense lines

showed increased leaf angles that were similar to those of the

antisense lines (Table S1). As compared with wild type, the lic-1

line showed reduced leaf angles from tillering stage (Figure S2A

and S2B). All LIC-overexpressing lines also showed erect leaves at

tillering (Figure S2A, Figure S3, and Table S2). During the

seedling stage, the wild type and lic-1, as well as overexpression

lines, did not differ in leaf angle. Therefore, the phenotype of the

lic-1 mutant was consistent with the LIC-overexpression lines in

terms of leaf angle.

BR biosynthetic genes D2 and D11 had repressed expression in

antisense lines. In contrast, the expression of the biosynthetic gene

BRD1, as well as the receptor gene BRI1, was enhanced in lic-1

(Figure S4).

In rice, the physiologic processes of leaf bending and root growth

are sensitive to BR [47,48]. In the wild type (WT), increased leaf

angle depended on the concentration of BR (Figure 1B and 1C).

The overexpressing lines and lic-1 showed reduced dependence on

BR concentration in leaf bending. In contrast, the antisense line was

more sensitive to BR dosage than the WT. In the antisense lines, the

root growth patterns in response to 24-eBL (an active form of BR)

were similar to leaf angle patterns (Figure S5A and S5B). Thus, LIC

overexpression reduced the BR response, and LIC depletion caused

hypersensitivity to BR in terms of leaf bending and root growth.

Therefore, LIC may negatively regulate BR signaling in rice.

OsLIC Is a Direct Target of OsBZR1
Bioinformatics analysis revealed the BZR1 binding site BRRE

(CGTGT/CG) [26] present in the promoter of LIC (Figure 2A).

EMSA was used to examine BZR1 binding to the cis-elements in

the LIC promoter in vitro. When the purified BZR1 protein was

incubated with the reaction mixture, a shifted band appeared in the

upper part of the gel but not in the control MBP. The greater the

amount of BZR1 in the incubation, the greater the amount of

shifted band on the gel. When the competitive unlabeled probe (Co)

was added to the system, the shifted band was suppressed. In

contrast, neither mutated P1 (MP1, CGAAAA) nor P2 (CGTGTG)

shifted under the same conditions (Figure 2B). We performed

chromatin immunoprecipitation (ChIP) assay with WT rice (Figure

S9). Real-time PCR revealed a fragment of the LIC promoter

containing the P1 binding element significantly enriched as com-

pared with the reference gene promoter (UBQ5) and control

fragments (P2, P3 and P4; Figure 2C). In the RNAi lines of BZR1,

LIC transcription was increased (Figure 2D). Thus, BZR1 binds to

the cis-element in the LIC promoter, and knockdown of BZR1 leads

to upregulation of LIC.

We crossed the BZR1 RNAi lines with erect leaves to the LIC

antisense lines with increased leaf bending to explore the genetic

relationship of the lines. By molecular identification (Figure S6A

and S6B), phenotypic analysis revealed an increased leaf bending

Author Summary

Brassinosteroids (BRs) are phytohormones mediating
multiple biological processes, such as development and
stress response. They have been used in crops to produce
high yield. In rice, the ideal plant architecture for high yield
includes effective tillers, as well as height and leaf angle,
which is modulated by BRs. Activation of BRI1–mediated
BR signaling is well understood, but much less is known
about its inactivating mechanism. Here, we found a gain-
of-function mutant lic-1 with the phenotype of the ideal
rice plant architecture. The C3H-type transcription factor
LIC antagonizes BZR1 to repress BR signaling in rice. We
used BR to induce the negative regulator LIC and found
that it functioned at high BR level, which may restrain
plant development. LIC was phosphorylated by GSK3–like
kinases. Phosphorylated LIC mainly localized in cytoplasm,
whereas dephosphorylated LIC was in nucleus, which was
regulated by BR treatment. LIC regulated transcription
patterns of the downstream genes in an opposite direction
to BZR1. BZR1 activated BR signaling, but the brake
module of LIC repressed BR cascade amplification. LIC and
BZR1 may balance BR signaling to control growth and
development in rice.

A Zinc-Finger Protein Antagonizes BZR1

PLoS Genetics | www.plosgenetics.org 2 April 2012 | Volume 8 | Issue 4 | e1002686



phenotype in the progenies, which was similar to that of the LIC

antisense lines (Figure 2E and 2F). Therefore, BZR1 may fun-

ctionally depend on LIC in terms of genetics.

LIC Is a Substrate of GSK3–Like Kinases, the Rice
Orthologs of AtBIN2

Transformed LIC-GFP fusion protein was used to investigate

subcellular localization. With BR treatment, GFP-tagged LIC was

rapidly weakened in the cytoplasm within 30 min but was enhanced

in the nucleus (Figure 3A a and b). The ratio of GFP-tagged LIC in

the nucleus to that in the cytoplasm (N/C ratio) was significantly

increased with BR treatment. Although LICm, mimicking the C-

terminus-truncated protein, was distributed in the nucleus and

cytoplasm, the cytoplasmic signal of LICm was clearly weaker than

that of intact LIC (Figure 3A c and d; 3C). Digital signal assay

demonstrated a lower ratio of LIC than truncated LICm in the

nucleus. The LICm pattern showed a similar increased N/C ratio in

response to BR treatment. In contrast, the truncated protein LICp,

lacking the putative phosphorylation sites (designated P site in

Figure 1A and Figure 3C) was localized only in the nucleus

(Figure 3B). Western blot analysis revealed a greater LIC band in

the nucleus of lic-1 as compared with the WT. Intensity of the

nuclear band was enhanced by treatment with 24-eBL (1 mM) for

both lic-1 and the WT. At the total protein level, the signal intensity

of LIC in the WT and lic-1 was not significantly different after

treatment (Figure 3D). Thus, the translocation of LIC from the

cytoplasm to the nucleus may be regulated by BR treatment and

depend on the phosphorylation status of LIC.

The GSK3-like kinase BIN2 phosphorylates BZR1 through the

conserved GSK3 kinase phosphorylation sites (S/TxxxS/T) and

promotes its cytoplasmic retention in Arabidopsis [49]. In rice, whole-

genome screening analysis revealed two putative orthologs of BIN2,

OsGSK1 and OsSKETHA [43].

Yeast two-hybrid assay revealed that LIC but not forms LICm

and LICp interact with GSK1 and SKETHA, as well as AtBIN2.

The mutated form did not interact with them (Figure S7). Western

blot analysis revealed that LIC was two bands and the larger one

was enhanced by incubation with BIN2. Furthermore, the

intensity of the larger band was reduced by the addition of l-

phosphatase 1 (Figure 4A), which agreed with the prediction that 5

typical phosphorylation sites of GSK3-like kinases (S/TxxxS/T)

were deposited in the P site domain of LIC protein.

When plants were treated with 24-eBL (1 mM), the phosphory-

lated form of LIC was suppressed (Figure 4B), whereas the

dephosphorylated form was increased. The P-LICm was weaker

than that for LICm (Figure 4C). Western blot revealed dephos-

phorylated LIC accumulated in the nuclear fraction, with the

phosphorylated form mainly in the cytoplasm (Figure 4D).

Transformed cells with GFP-tagged LIC showed the N/C ratio

of LIC with digital fluorescence signals was 3.0 (Figure 5A and 5B).

The nuclear distribution of LIC was enhanced with 24-eBL

treatment. In contrast, in cells co-transformed with both GSK1 and

LIC, less of LIC localized in the nucleus. Western blot analysis

demonstrated that phosphorylated LIC was upregulated after

incubation with GSK1 but downregulated with l-phosphatase 1

(Figure 5C). This result suggested that GSK1 phosphorylated LIC,

which might repress its localization in the nucleus.

LIC Regulates BZR1 in a Negative Feedback Loop
Expression pattern assay demonstrated BZR1 and LIC with

overlapping and distinct expression patterns in different organs

(Figure S10). The expression of LIC was distributed from the abaxial

to adaxial sides in leaves. In contrast, the expression of BZR1 was

dominant in the abaxial sides of leaves (Figure 6A).

The effect of BR on LIC transcription showed repression at low

(1 nM) and activation at high (.100 nM; Figure 6B) 24-eBL

concentrations. This matches the phenotype of root growth (Figure

S5C). The peak of LIC transcription occurred with 1 mM 24-eBL. In

contrast, the mRNA level of BZR1 was increased with low levels of

24-eBL (1 nM) and decreased with high levels (.100 nM;

Figure 1. LIC negatively regulates BR signaling. (A) A diagram of the T-DNA insertion site in the lic-1 mutant. LIC contains C3H, EELR and P site
domains. The T-DNA is located near the P site domain. (B) Lamina joint assay of the lic-1 mutant and the LIC-overexpressing lines in the presence of
BR (the upper panel is treatment without BR and the bottom panel is 1 mM BR treatment; OX1, LIC-overexpressing line 1; AS2, LIC antisense line 2).
Bar = 1 cm. (C) Quantification of lamina joint angle under different concentrations of BR. Lamina joint angles were averaged in 20 plants. BR-deficient
mutant d2 was a control. Data are mean6SD.
doi:10.1371/journal.pgen.1002686.g001

A Zinc-Finger Protein Antagonizes BZR1

PLoS Genetics | www.plosgenetics.org 3 April 2012 | Volume 8 | Issue 4 | e1002686



Figure 6B). Western blot analysis demonstrated that the pattern of

LIC protein level was similar to the mRNA pattern with low levels

of 24-eBL. However, the reduced negative-peak occurred with a

higher 24-eBL concentration (100 nM) than for the RNA (1 nM).

Additionally, the increased protein expression was sustained with up

to 10 mM 24-eBL (Figure 6C). Thus, LIC expression may be

downregulated by a low level of BR but upregulated by higher

concentrations.

In the mutant d2, BR deficiency caused LIC expression reduced to

only 20% the WT level. BZR1 depletion resulted in increased LIC

expression (Figure 6D). Time-course assay revealed LIC expression

gradually increased from 15 min up to 3 h during BR treatment

(1 mM 24-eBL) (Figure 6E). In the LIC antisense lines, BZR1

expression was enhanced with the treatment, which was opposite to

that in the WT. Transcription expression of the BZR1 target gene

CPD was greatly repressed by BR treatment in the antisense lines

(Figure 6F). Thus, LIC may be involved in the negative regulation of

BZR1.

To screen LIC potential target motifs, genes with altered

expression of the LIC antisense lines in microarray data were re-

sorted. In previous microarray analysis [10], the expression of

1,175 genes was altered by at least 2-fold in the LIC antisense lines.

We extracted 1 kb of upstream sequences of the genes with altered

expression patterns as the predicted promoters and then used

MEME (http://meme.sdsc.edu/meme/cgi-bin/meme.cgi) to lo-

cate the recurrent motifs. We extracted 14 motifs representing the

potential regulatory cis-elements from the altered genes (Figure

S8A). EMSA results suggested that 3 elements (S1–3) containing a

core sequence TCGC bound to LIC (Figure S8B). Therefore, the

core sequence TCGC is one of the LIC-binding elements.

The core sequence was deposited in BZR1 gene. ChIP data

revealed that LIC bound to the BZR1 promoter in various regions,

such as, a, c, e, f, g and j, which were upregulated by BR treatment

in the WT (Figure 7A and Figure S9). In contrast, the remaining

fragments, which lacked TCGC, such as, b, d, h, I and k, had

lower binding affinities. In the lic-1 mutant, the bound patterns

were similar to that of the BR-treated WT.

We used MEME to locate the recurrent motifs among the

multiple region sequences identified on ChIP. The motif CTCGC

(denoted as S, containing the TCGC core sequence) was

consistently found with high values (Figure 7B and Figure S8C).

EMSA demonstrated that LIC bound specifically to CTCGC

(Figure S8D). Mutated probes M1 (ATCGCG) and M2

(CTCGCT) led to decreased intensity of the shifted band. In

contrast, mutated M3 (CAAAAG) caused the band to disappear.

The fragments with multiple copies of the element on the BZR1

promoter were used to further confirm the binding activity. EMSA

results suggested that binding affinities of LIC were related to copy

numbers of the elements in the BZR1 promoter (Figure 7C).

Transient transfection assay revealed that LIC protein repressed

the expression of BZR1pro:LUC in Arabidopsis protoplasts as

compared with the control (vector; Figure 7D) [26]. Therefore,

Figure 2. LIC promoter is targeted to the BZR1 protein. (A) A diagram of the LIC promoter containing BZR1 binding site (black circles):
CGTGCG. White ring represents the sequence CGTGTG. Black lines P1–4 indicate the sequences tested in ChIP assays. P1 contained CGTGCG and P2
contained CGTGTG. But both elements were absent in P3 and P4. (B) Gel shift assay with BZR1 protein and the fragment sequences of the LIC
promoter. The arrow indicates shifted bands caused by BZR1 binding to the LIC promoter P1 (CGTGCG). The unlabeled P1 was a competitive probe
(Co). BZR1 could not bind to P2 (CGTGTG) or mutated P1 (MP1, CGAAAA). MBP was a negative control. (C) ChIP assay revealed BZR1 enriched the LIC
promoter fragment containing P1 in vivo. Data are mean 6 SD (n = 3). UBIQUITIN promoter (UBQ5) was a negative control. (D) Increased expression
pattern of LIC in the RNAi line of BZR1 (BZR1R). Data are mean 6 SD (n = 3). (E) Phenotypes of the progeny of BZR1R X AS2 and the parent lines BZR1R
and AS2, as well as the wild type. The plants analyzed in this experiment were 30 days old. Bar = 20 cm. (F) Quantification of the leaf angles of the
progeny BZR1R X AS2 and the parent lines BZR1R and AS2, as well as the wild-type in (E). Leaf angles were averaged in 15 plants. Data are mean 6 SE.
doi:10.1371/journal.pgen.1002686.g002
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LIC may be a primary transcription factor targeting OsBZR1 to

regulate the BR signaling pathway.

LIC and BZR1 Function Antagonistically in Regulating
Downstream Genes

To determine the potential antagonistic functions of both genes,

we analyzed the expression patterns of their potential downstream

genes. BZR1 mainly binds IBH1 to affect the balance of a pair of

antagonistic HLH/bHLH transcription factors ILI1 and IBH1 in

rice [45]. In an LIC-depleted line (AS2), ILI1 expression was higher

than in the WT, whereas IBH1 transcription was not significantly

altered (Figure 8A). The core motif sequence CTCGC of LIC target

was present as a glomerate pattern in ILI1 but as a sparse pattern in

IBH1. EMSA data indicated that the fragment containing the

sequence B2 in ILI1 strongly bound to LIC. In contrast, the signal of

C3 in IBH1 with a single core element was weaker (Figure 8B). ChIP

analysis of the potential target ILI1 after BR treatment in the WT

demonstrated significant changes (.2.5-fold) in binding in diverse

regions such as a, d, e, f and n, but not in regions such as b, c, h, i, j

and l (Figure 8C). IBH1 exhibited a similar pattern as ILI1 on ChIP

analysis, but the copy number of the core element on the IBH1

fragments, such as c and k, was much lower than that for ILI1

(Figure 8D). Unexpectedly, the change appeared in the region

without the core motif such as j, so other unknown motifs may be

involved. To further explore the potential activity of the trans-

cription factor with its targets ILI1 and IBH1, we used a protoplast

transfection assay. LIC repressed the expression of ILI1pro:LUC but

activated that of IBH1pro:LUC (Figure 8E). Competitive binding

assay showed that the repression activity of LIC on ILI1 was

weakened by co-expression of BZR1 (Figure 8F). Thus, LIC

dominantly repressed ILI1 expression and weakly bound to IBH1 to

enhance expression to balance the regulation activity of BZR1.

Figure 3. LIC accumulates in the nucleus in response to BR treatment. (A) LIC accumulated in the nucleus in response to BR induction: (a)
and (b) LIC-GFP fusion protein localized in both the nucleus and cytoplasm; LIC-GFP fluorescence intensity was weakened in the cytoplasm and
enhanced in the nucleus with 1 mM 24-eBL treatment for 30 min. (c) and (d) LICm (mimic of lic-1) accumulated in the nucleus after 1 mM 24-eBL
treatment similar to the intact LIC protein pattern. Numbers in each image show the mean signal of the total cell (10006) and standard errors
calculated from 10 cells for each treatment. The white lines inside the images show the areas used for line scan measurements that yielded plot
profiles shown in the lower panels. The table shows signal intensities (1056) and the ratios between nuclear and cytoplasmic (N/C) from represented
areas. N, nuclear signal; C, cytoplasmic signal. The scale bar is 20 mm. (B) LICp-GFP fusion protein (deletion of both the C-terminus and P site) localized
in only the nucleus. Bars = 20 mm. (C) A diagram for LIC protein (containing CCCH domain, EELR, P site and C terminus), LICm (deletion of the C-
terminus, mimic of lic-1) and LICp (deletion of both the C-terminus and phosphorylation sites). (D) Immunoblotting analysis of LIC and LICm protein
levels in the nuclear fractions and total protein. LICm localization was more in the nucleus, which is similar to wild-type LIC in BR-treated (1 mM)
plants. LIC levels in the total protein did not change under the same condition. Histone 3 was the loading control for the nuclear fraction and Rubisco
small subunit was the loading control for total protein.
doi:10.1371/journal.pgen.1002686.g003
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Discussion

BZR1 is one of the key nodes for components in the BR signaling

pathway. Modification of phosphorylation on BZR1 modulates BR

signaling to mediate growth and development in Arabidopsis [33,34].

In this study, we identified LIC as a negative regulator of BZR1 to

halt BR signaling to control leaf angle in rice. LIC antagonizes

BZR1 by repressing its transcription in leaf bending (Figure 9). Like

BZR1, the transcription factor LIC is phosphorylated by GSK1/

BIN2. LIC and BZR1 are a pair of antagonistic transcription factors

that repress each other during transcription. However, their

repression strength may depend on BR level. The gain-of-function

mutant lic-1 showed that LIC repressed BZR1 transcription and leaf

bending, which may mimic a BR signaling balance to switch on the

‘‘brake.’’ The transcriptional expression of LIC and its protein

accumulation in the nucleus were induced by BR. LIC dominantly

binds to BZR1 and its target ILI1 and weakly to IBH1. In contrast,

BZR1 mainly targets IBH1 to affect the balance of a pair of

antagonistic HLH/bHLH transcription factors, except to bind LIC.

The ‘‘seesaw’’ mechanism of the antagonistic function may work at

various BR levels during plant development. BZR1 may function at

a low level to promote signaling and LIC at higher levels for braking.

Our data suggest that LIC is a component of the BR signaling

pathway and mediates a novel braking module that represses BR

signaling to control plant development.

LIC Is a Major Negative Regulator Mediating Signaling
from GSK3 Kinases

Leaf bending is a specific phenotypic response to BR in rice [47].

LIC-depleted rice lines show increased leaf bending, which mimic

the phenotypes of enhanced responses to BR, such as the OsBAK1-

overexpressing lines [40]. Consistently, the gain-of-function mutant

lic-1 and overexpressing lines show erect leaves similar to OsBZR1-

and OsBAK1-depleted lines. Reverse expression patterns of do-

wnstream genes such as ILI1 and IBHI1 were found in the silenced

lines of BZR1 and LIC. Similarly like BZR1, LIC acts in an early BR

response, because its expression was induced by BR treatment

within 15 min. BR-induced LIC accumulation in the nucleus was a

rapid response to BR and acts as an upstream component in BR

signaling. Therefore, LIC functions negatively in the BR-mediated

regulation of leaf bending.

LIC, with phosphorylation sites of GSK1/BIN2 kinases, interacts

with BIN2 and its rice orthologs GSK1 and SKETHA and could be

phosphorylated. The C-terminus-truncated LICm, as well as P-site-

truncated LICp, show decreased interaction with GSK1/BIN2 and

consequently display lower phosphorylation levels and greater

accumulation in the nucleus to constitutively regulate downstream

genes. The shuttle of LIC between the nucleus and cytoplasm was

regulated by BR treatment and might depend on the phosphory-

lation status of LIC. This shuttle localization pattern depended on

BIN2/GSK1, as seen with BZR1/BES1 [23,42,50]. Our results

suggest that LIC directly mediates BR signaling from GSK3 kinases.

LIC Antagonizes BZR1 in Rice Leaf Bending
BZR1 is a key component positively regulating BR signaling,

whereas LIC plays a negative role in the signaling pathway. With

BR treatment, LIC and BZR1 accumulate in the nucleus and

regulate downstream genes. BZR1 represses BR-downregulated

genes through the downregulation of BIN2 phosphorylation and

decreases cytoplasmic retention mediated by 14-3-3 proteins during

BR-mediated induction [42,50]. BZR1 and BES1 gain-of-function

mutants in Arabidopsis are hypersensitive to BR. Depleted AtBES1

leads to reduced BR sensitivity [51]. The RNAi lines of OsBZR1 are

insensitive to BR and show erect leaves [42]. Our genetic analysis

and molecular data suggested that LIC and BZR1 work on rice leaf

bending in a genetic pathway, but their roles are opposite to each

other. EMSA and ChIP data, as well as transcription assay data,

indicated that the BZR1 protein directly represses LIC expression

via the specific BRRE motif (CGTGCG). We found that LIC

protein recognizes the BZR1 gene through the core element

(CTCGC) to repress its transcription. The expression of both genes

may be induced by BR treatment at various concentrations. BR

treatment at low concentrations (1029 M) induced the expression of

BZR1 and promoted the dephosphorylation of BZR1 protein as an

activation mechanism. However, BR treatment at high concentra-

tions (up to 1027 M) induced LIC expression. The repression of

BZR1 transcriptional expression by LIC is enhanced by high BR

levels. Therefore, LIC and BZR1 antagonize each other in

controlling BR-mediated leaf bending.

LIC, with only one CCCH domain, binds DNA or RNA in vitro

(Figure S11) [10]. It prefers to recognize the core sequence CTCGC,

which is present in genes such as BZR1 and ILI1, to regulate BR

Figure 4. LIC is phosphorylated by BIN2/GSK1. (A) Immunoblot-
ting analysis to demonstrate that LIC was phosphorylated by BIN2. LIC
phosphorylation was antagonized by l-phosphatase 1 (PP1). The
phosphorylation status of LIC is illustrated by autoradiography of an
anti-LIC antibody in the top panel. The amount of protein is shown with
Coomassie Blue staining in the bottom panel. The levels of unpho-
sphorylated LIC relative to the control without BIN2 and PP1 (-P%) were
calculated after normalization against the intensity of Coomassie Blue
staining, and these values are shown beneath the gel images. (B)
Treatment with BR (1 mM) decreased the levels of phosphorylated LIC
and increased that of unphosphorylated LIC. Rice plants were grown for 2
weeks and then soaked with 1 mM 24-eBL (+) or mock solution (2) for
3 h. LIC protein was analyzed by immunoblotting with an anti-LIC
antibody (upper panel). The loading control with Coomassie Blue
staining is shown in the bottom panel. (C) The mutated protein LICm
caused decreased phosphorylation in the lic-1 mutant. The 24-eBL
concentration was 1 mM. (D) Immunoblotting assay for LIC protein in the
nuclear and cytoplasmic fractions. Dephosphorylated LIC was dominant
in the nucleus (N), and phosphorylated forms were dominant in the
cytoplasm. Nuclear and cytoplasmic protein fractions were extracted
from 2-week-old rice seedlings. Histone 3 was a marker for the nuclear
protein and ß-actin for the cytoplasmic protein.
doi:10.1371/journal.pgen.1002686.g004
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signaling in rice. Our finding of the motif binding to LIC with

specificity will provide new insights into this family.

BZR1 is a transcription factor that represses the expression of

downstream genes such as OsIBH1, which is responsible for leaf

bending. ILI1/PRE1 and IBH1 promote or repress cell

elongation downstream of BZR1 in rice and Arabidopsis [45,52].

Overexpression of ILI1 causes increased leaf bending, whereas

overexpression of IBH1 results in erect leaves in rice. EMSA and

ChIP results suggested that LIC greatly represses ILI1, the

positive partner of OsIBH1. As well, LIC weakly binds to OsIBH1

promoter to enhance its transcriptional expression. This pattern

is similar to BZR1 weakly binding to the promoter of ILI1, which

is induced by BR [45]. In regulating downstream genes, LIC may

play a major role in repressing positive regulators such as ILI1,

and BZR1 may function to repress negative regulators such as

IBH1. Therefore, a novel negative regulation module of BR

signaling is parallel to and antagonizes the BZR1 signaling

pathway to regulate leaf bending. In plant development, LIC and

BZR1 show various spatial and temporal expression patterns.

BZR1 acts in the presence of low levels of BR, whereas LIC is

predominantly activated by high levels of BR and antagonizes

BZR1 to prevent intense activation of the BR cascade. The novel

negative regulation module of LIC and the positive one of BZR1

in mediating leaf bending may help in designing ideal plant

architecture for improving photosynthesis efficiency during rice

development. The approach may have potential in rice molecular

breeding for high yield.

Materials and Methods

Plant Materials and Growth Conditions
Rice (Oryza sativa ssp. japonica var. Zhonghua 10) plants were

grown in the field or in the greenhouse at 30uC/25uC (day/night)

cycles. For the analysis of BR induction in leaf bending and root

growth, rice seeds were sterilized with 1% NaClO and grown in

half-strength Murashige and Skoog (MS) medium with the

indicated concentrations of 24-eBL (Sigma-Aldrich, St. Louis,

MO, USA) at 30uC under continuous light. Seedlings were

examined 7 days after germination. For every transgenic rice plant,

3 lines were used.

Leaf-Bending Assay
Sterilized seeds were grown for 8 days in a dark chamber.

Uniform seedlings were then sampled by excising segments of

approximately 2 cm that contained the second-leaf lamina joint

under dim light conditions. These were floated on distilled water

containing various concentrations of 24-eBL. After incubation in a

dark chamber at 30uC for 72 h, the angle between the lamina and

the sheath was measured [47].

Total RNA Isolation and Quantitative RT–PCR Analysis
Total RNA was extracted from 2-week-old seedlings by using the

Trizol RNA extraction kit (Invitrogen, Carlsbad, CA, USA). The

first-strand cDNAs were synthesized by use of M_MLV reverse

transcriptase (Promega) and used as RT-PCR templates. Quanti-

Figure 5. GSK1 phosphorylates LIC and reduces its nuclear localization. (A) The LIC-GFP fusion protein localized in both the nucleus and the
cytoplasm (left). LIC-GFP fluorescence intensity was enhanced in the nucleus and weakened in the cytoplasm after treatment with 1 mM 24-eBL (middle).
LIC-GFP fluorescence intensity was weakened in the nucleus when co-transformed with GSK1 (right). Numbers in each image show the mean signal
intensity (10006) from at least 10 cells. Data are mean6SE. Bars = 20 mm. (B) Quantification of the fluorescence intensity (1056) and the ratio between
the nucleus and the cytoplasm (N/C) in represented areas. N, nuclear signal; C, cytoplasmic signal. (C) Immunoblotting to demonstrate the
phosphorylation of LIC by GSK1, which was antagonized by l-phosphatase 1 (PP1). The level of phosphorylation is shown by autoradiography with an
anti-LIC antibody in the top panel and the loaded amount of proteins is indicated by Coomassie Blue staining in the bottom panel. The levels of
unphosphorylated LIC relative to the control without GSK1 and PP1 (-P%) were calculated after normalization against the intensity of Coomassie Blue
staining and these values are shown beneath the gel images.
doi:10.1371/journal.pgen.1002686.g005
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tative real-time PCR analysis involved an Mx3000P (Stratagene)

with a SYBR green detection protocol. RT-PCR was repeated at

least 3 times for each harvested samples with gene-specific primers

and ACTIN1 as the reference gene (see Table S1). The data were

analyzed by the CT formula considering amplification efficiencies

for every PCR [53].

Vector Construction and Plant Transformation
The cDNA of LIC from a rice cDNA library was amplified by

PCR and ligated into pUN1301 binary vectors for overexpression.

Full-length cDNAs of LIC, GSK1, SKETHA, and AtBIN2 without the

stop codon were amplified by PCR from rice or Arabidopsis and

cloned into pGADT7 or pGBDT7 vectors. All binary vector

constructs were transformed into Agrobacterium tumefaciens strain

GV3101 or EHA105, then transformed into rice calli by A.

tumefaciens-mediated transfection [54,55]. Primers are in Table S4.

For tobacco transformation, full-length cDNAs of LIC and GSK1

were ligated into pBI121 and pRT105-36flag vectors [56], res-

pectively. The binary vector constructs were transformed into A.

tumefaciens strain GV3101 and then transformed into tobacco by A.

tumefaciens-mediated transfection.

Protoplast Transient Expression Assay
Full-length LIC sequence was inserted into the pBI221 vector to

generate pBI221-LIC. To generate the BZR1pro:LUC reporter gene,

the BZR1 promoter was amplified with the rice genomic DNA used

as a template and then inserted into the pGEM-T Easy vector to

produce pGEM-BZR1p. The BZR1 promoter was released from

pGEM-BZR1p by digestion with HindIII and BamHI and inserted

into the corresponding sites of the YY96 vector [57] to produce

BZR1pro:LUC. The ILI1pro:LUC and IBH1pro:LUC reporter genes

were constructed as for BZR1pro:LUC.

Figure 6. LIC and BZR1 expression patterns and their responses to BR. (A) RNA in situ expression of LIC and BZR1 on the abaxial and adaxial
sides of leaves (the bottom panel represents the negative control with sense probes). Bar = 10 mm. (B) LIC and BZR1 transcriptional expression
response to various concentrations of BR. Data are mean 6 SD (n = 5). *P,0.05 and **P,0.01 compared with no BR treatment as determined by
Student’s t test. (C) Immunoblotting to show the response of LIC protein expression to BR. LIC was repressed by low concentrations of BR (,100 nM)
and induced by high concentrations of BR (.200 nM). Coomassie Blue staining served as the loading control. The levels of LIC were calculated after
normalization against the intensity of Coomassie Blue staining in 3 replicated experiments, and the quantified values are shown beneath the gel
images. Data are mean 6 SE. (D) LIC transcriptional expression with BR treatment in wild-type (WT) and BR-deficient mutant d2 and BZR1 RNAi
transgenic lines (BZR1R). LIC antisense line 2 (AS2) was a control. Data are mean 6 SD (n = 3). (E) Time course response of transcription expression of
LIC to BR (1 mM). LIC was rapidly induced by BR. Data are mean 6 SD (n = 3). (F) BZR1 and CPD transcriptional response to BR treatment in the wild
type and LIC antisense lines. For BZR1, data are mean 6 SD (n = 5). *P,0.05, compared with no BR treatment. For CPD, Data are mean 6 SD (n = 3).
doi:10.1371/journal.pgen.1002686.g006
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Isolation of Arabidopsis protoplasts and PEG-mediated transfection

were as described [58]. The reporter constructs BZR1pro:LUC,

ILI1pro:LUC and IBH1pro:LUC; effector plasmid; and 35S:GUS

construct (internal control) were co-transformed into protoplasts.

After transformation, the protoplasts were incubated at 23uC for 12–

15 h, then pelleted and resuspended in 100 mL of 16CCLR buffer

(Promega). For the ß-glucuronidase enzymatic assay, 5 mL extract

was incubated with 50 mL 4-methylumbelliferyl ß-D-glucuronide

assay buffer (50 mM sodium phosphate, pH 7.0, 1 mM ß-D-

glucuronide, 10 mM EDTA, 10 mM ß-mercaptoethanol, 0.1%

sarkosyl, 0.1% Triton X-100) at 37uC for 15 min, and the reaction

was stopped by adding 945 mL of 0.2 M Na2CO3. For luciferase

activity assay, 5 mL extract was mixed with 50 mL luciferase assay

substrate (Promega), and activity was detected with use of a Modulus

Luminometer/Fluometer with a luminescence kit (Promega). The

reporter gene expression was expressed as relative ratio of LUC to ß-

glucuronidase.

Yeast Two-Hybrid Screening
The cDNA of LIC was cloned into the pGADT7 vector. The

cDNAs of GSK1, SKETHA, and AtBIN2 were cloned into pGBDT7

(Stratagene) and then transformed into yeast strain AH109.

Transformants were screened for growth on medium lacking Leu,

Trp, and His. Recovered clones were then assayed for LacZ activity

by a filter lift assay. For the transactivation activity assay, LIC,

AtBIN2, GSK1, and SKETHA were cloned into the pGBDT7 vector

and co-transformed with pGADT7 into yeast cells. Yeast that could

grow on SD/-Leu/-Trp/-His medium with ß-galactosidase activity

exhibited transactivation activity.

Western blot analysis involved extracts prepared from yeast cells

as described [14]. The yeast cells were collected, ground to a fine

powder in liquid nitrogen, and further ground in cold grinding

buffer (50 mM HEPES (pH 7.4), 10 mM EDTA, 0.1% Triton X-

100, 1 mM PMSF). After the addition of an equal volume of 26
sample buffer, the samples were boiled for 10 min, separated by

15% SDS–PAGE, and transferred to a polyvinylidene fluoride

membrane. The blots were incubated with the antibodies mouse

anti-Myc (Neo-Marker, UK) or mouse anti-HA (Santa Cruz,

Germany), then goat anti-mouse IgG HRP-conjugated secondary

antibody (Santa Cruz, Germany).

ChIP and EMSA
Chromatin immunprecitipation (ChIP) was performed as de-

scribed [26] with 3-week-old seedlings. The antibody polyclonal

anti-BZR1 or anti-LIC was used for immunoprecipitation. Un-

tagged purified LIC protein was used to inject rabbit, and polyclonal

Figure 7. LIC binds to BZR1 and represses its transcriptional expression. (A) ChIP assay to illustrate LIC binding to the BZR1 promoter. The
binding was enhanced in the lic-1 mutant and in wild-type plants treated with BR. The black circles with a white ring indicate the putative binding
motif S (CTCGC). A1, A2 and A3, the probes used in EMSA; a–k, sequences tested in ChIP assay; a–c, also as sub-sequences of A1 used in EMSA. The
UBQUITIN5 promoter was a control. (B) Putative binding motif S predicted by MEME software (http://meme.sdsc.edu/meme/cgi-bin/meme.cgi).
Sequence logo shows the frequencies relative to the information content at each position. (C) Gel shift assay to illustrate LIC binding to the putative
core binding sequence. LIC bound to the BZR1 promoter A1 fragment (4 elements) but not to the A2 or A3 fragments (one element); GST could not
bind to A1. The right panel shows LIC binding to sub-sequences of the A1 fragment a–c, Ma and Mc (CTCGC were mutated to AAAAA). (D) Transient
transfection assay indicating that LIC inhibits BZR1pro:LUC reporter gene expression in Arabidopsis protoplasts. The AtCPDpro:LUC reporter gene
repressed by BZR1 was the control. Data are mean6SD of triplicate experiments.
doi:10.1371/journal.pgen.1002686.g007
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serum was affinity-purified with its target antigen. ChIP products

were analyzed by quantitative real-time PCR, and enrichment was

calculated as the ratio of transgenic to wild-type sample or BR-

treated and control seedlings. Data are mean6SD from 3 biological

replicates. The primers for UBQ5 (LOC_Os04g57220) promoter

were 59-TATCCAACATGAATGCCACA-39 and 59-CAGCAC-

GAGATGAGTAAAACAA-39. Sequences used in bioinformatics

analysis are in Table S3.

EMSA was performed essentially as described [59]. Briefly, the

OsBZR1 coding region was cloned into a maltose-binding protein

(MBP) fusion vector (pETMALc-H vector, Pryor and Leiting, 1997)

with the primers for OsBES1NAsp718, 59-CTCGGTACCGG-

AGCTGGTGGGTATGACGTC-39, and OsBES1CHind3, 59-

CGCAAGCTTTCATTTCGCGCCGACGCCGAGC-39. The re-

combinant MBP–OsBZR1 was purified from Escherichia coli with

amylose resin (NEB, http://www.neb.com) according to the

manufacturer’s instructions [60]. The coding sequence of LIC was

cloned into the expression vector pGEX-4T-1 [10]. The construct

was transformed into E. coli BL21 (DE3). Cells were grown at 30uC
and induced by the addition of isopropyl b-D-thiogalactopyranoside

Figure 8. Opposite regulation of downstream genes in BR signaling by LIC and BZR1. (A) Transcriptional expression patterns of ILI1 and
IBH1 in the LIC antisense line (AS2). Data are mean 6 SD (n = 3). (B) Gel shift assay to illustrate LIC binding to the different fragments of the ILI1 and
IBH1 promoters. ILI1 B2 and IBH1 C3 contain the binding element S. ILI1 B1, B3, IBH1 C1 or C2 fragments contain no or less binding elements. (C) and
(D) ChIP analysis of LIC binding to the ILI1 and IBH1 promoters by use of anti-LIC antibody. The binding was enhanced in the lic-1 mutant and in wild-
type plants in the presence of BR. The black circle with white ring indicates the binding element S. B1–3 and C1–3 are the probes used in (B), and a–n
(used in (C)) and a–k (used in (D)) indicate the sequences tested in ChIP assay. The UBQUITIN5 promoter was used as a control. (E) Transient
transfection assay to illustrate that LIC repressed ILI1pro:LUC and activated IBH1pro:LUC reporter gene expression in Arabidopsis protoplasts (the 403-
bp ILI1 promoter indicated as B2 in (C) and the 451-bp IBH1 promoter indicated as C3 in (D) were used). The inhibition of AtCPDpro:LUC reporter gene
expression by BZR1 was the control. Data are mean6 SD. (F) Transient transfection assay indicated that LIC and BZR1 antagonistically regulate
ILI1pro:LUC reporter gene expression. Data are mean 6 SD.
doi:10.1371/journal.pgen.1002686.g008
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at a final concentration of 1 mM when the optical density (OD)600

of the cultured cells was 0.5–0.9. The fusion protein was purified

with Glutathione Sepharose 4B (GE Healthcare). The nucleotide

sequences of the double-stranded oligonucleotides for EMSA were

for LIC P1 (59-CGA CGT CGT GCG GCC GCG-39 and 59-CGC

GGC CGC ACG ACG TCG-39) and LIC P2 (59-CGG GCG CGT

GTG TGG CGG-39 and 59-CCG CCA CAC ACG CGC CCG-

39). The oligonucleotides were annealed and then labeled with the

Biotin 39 End DNA Labeling Kit (Pierce). Standard reaction

mixtures (20 mL) for EMSA contained 2 mg purified proteins, 2 mL

biotin-labeled annealed oligonucleotides, 2 mL 106binding buffer

(100 mM Tris, 500 mM KCl, 10 mM DTT, pH 7.5), 1 mL 50%

glycerol, 1 mL 1% NP-40, 1 mL 1 M KCl, 1 mL 100 mM MgCl2,

1 mL 200 mM EDTA, 1 mL 1 mg/mL poly (dI-dC) and 8 mL

ultrapure water. The reactions were incubated at room temperature

(25uC) for 20 min and loaded onto a 10% native polyacrylamide gel

containing 45 mM Tris, 45 mM boric acid, 1 mM EDTA, pH 8.3.

The gel was sandwiched and transferred to an N+ nylon membrane

(Millipore) in 0.56TBE buffer at 380 mA in a 4uC refrigerator for

60 min. The detection of biotin-labeled DNA by chemilumines-

cence followed the manual of the LightShift Chemiluminescent

EMSA Kit (PIERCE).

Confocal Microscopy and Quantification of Protein
Fluorescent Signal

GFP fluorescence was visualized under a confocal microscope

(Zeiss LSM510 META, Germany) equipped with an argon laser

(488 nm). GFP was excited by an Argon laser at 488 nm, and

images were acquired using a 512b Roper Cascade EMCCD

camera and MetaMorph software (Molecular Devices, Sunnyvale,

CA). Images of LIC-, LICm-, and LICp-GFP were obtained with

identical image acquisition settings. A series of images at different

points along the z-axis were collected from the top to the bottom.

Projection of the z-series of images results in a 3D view of the cell.

To quantify the effect of 24-eBL on OsLIC-GFP localization in

the time-course experiment, images were obtained with a 500-ms

exposure time. Quantification of the fluorescent protein signal

involved use of ImageJ (http://rsb.info.nih.gov/ij). To measure

the ratio of nuclear to cytoplasmic signals (N/C ratio) for LIC-

GFP for each cell, small areas were drawn, and measurements of

integrated densities were taken from representative areas within

the nucleus, cytoplasm, and background (central vacuole) of each

cell. Each sample of at least 20 cells was measured 3 times; the

average N/C ratio were then calculated [42].

Western Blot Analysis and Kinase Assay In Vitro
Total protein samples were extracted from 2-week-old rice

seedlings with 26 SDS loading buffer; cytoplasmic and nuclear

fractions were extracted as described [20,61]. Tissues were lysed

with use of a buffer (20 mM Tris-HCl, pH 7.0, 250 mM sucrose,

25% glycerol, 20 mM KCl, 2 mM EDTA, 2.5 mM MgCl2, 30 mM

ß-mercaptoethanol, 13-protease inhibitor cocktail, and 0.7% Triton

X-100) and fractionated by centrifugation at 30006g. The su-

pernatant was taken as the cytosolic fraction. The pellet was further

washed with a resuspension buffer (20 mM Tris-HCl, pH 7.0, 25%

glycerol, 2.5 mM MgCl2, and 30 mM ß-mercaptoethanol) and

reconstituted as the nuclear fraction. All proteins were separated on

SDS-PAGE gels, transferred to a nitrocellulose membrane, and

probed with anti-LIC antibody. For the in vitro kinase assay, purified

LIC-GST protein was incubated with BIN2/GSK1 protein or l-

phosphorylase 1 at 30uC for 30 min and loaded onto SDS-PAGE

gels. SDS-PAGE gels of 8% or 15% were used to analyze the total

LIC level or its phosphorylation, respectively. The proteins were

transferred to a nitrocellulose membrane until the 35-kDa protein

marker ran out of the gel during electrophoresis.

RNA Hybridization In Situ
Tissues were fixed in 4% (w/v) paraformaldehyde and 0.25%

glutaraldehyde in 0.1 M sodium phosphate buffer; samples were

vacuum-infiltrated for 30 min and then stored overnight at 4uC.

The dehydrated samples after a graded ethanol series were

embedded in Paraplast Plus (Oxford Labware, St. Louis, MO). A

fragment of 232 bp was amplified from the second exon of LIC

with the primers 59-GGATCCGCAAGTACGGAGCGCAGTG-

39 and 59-AAGCTTTTCG CAGGACCAGGAGCA-39, sub-

cloned into the pGEM-T-easy vector (Promega), and used as a

template for RNA probe synthesis. A fragment of BZR1 was

amplified with the primers 59-ATCAGGAAGCCGGACTGGG-

39 and 59-GGTTGACGAGGTTGTAGGTGGG-39. Hybridiza-

tion in situ with digoxigenin-labeled sense or antisense RNA of LIC

and BZR1 was conducted as described [62].

Bioinformatics Analysis of the Putative Binding Motif
MEME software (http://meme.sdsc.edu/meme/cgi-bin/meme.

cgi) was used to find recurrent motifs among multiple sequences in

Affymetrix microarray data for the LIC antisense lines that were up-

or downregulated by at least 2-fold [10]. We extracted 1-kb genomic

sequences upstream of 1,175 genes to screen the potential motifs.

Differentially expressed genes were divided into those up- or

downregulated. Randomly generated sequences of the same length

were used as controls to remove false-positive results.

Accession Numbers
Sequence data from this article can be found in the GenBank or

EMBL database under the following accession numbers: LIC,

Os06g49080; GSK1, Os01g10840; SKETHA, Os06g35530; ILI1,

Os04g54900; Os IBH1, Os04g0660100.

Figure 9. A hypothetical working model for the role of LIC in
the BR signaling pathway. BZR1 is a positive transcription factor and
represents an activation pathway, whereas LIC functions antagonisti-
cally as a negative transcription factor and mediates a ‘‘brake’’ pathway
in BR signaling. Both BZR1 and LIC are phosphorylated by BIN2/GSK1
and transported to the cytoplasm in the absence of BR (green
represents positive members and the activation pathway, and red
represents negative members and repression pathway in BR signaling).
doi:10.1371/journal.pgen.1002686.g009
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Supporting Information

Figure S1 Identification of lic-1 mutant and LIC-overexpressing

lines. (A) A diagram of the T-DNA insertion site in the lic-1 mutant

and the primers used in the identification of the mutant. LB

represents the left border primer in T-DNA, LP and RP represent

the left and right primers for LIC respectively. P1+P2 represent

primers used to amplify the N-terminal fragment of LIC and

P1+P3 represent primers used to amplify full-length LIC. (B) PCR

of genomic DNA to amplify T-DNA with primers LB+RP and LIC

with primers LP+RP. Italicized numbers 9, 17 and 22 indicate

homozygous mutants. (C) PCR of cDNA to amplify full-length LIC

and the N-terminal fragment of LIC in the lic-1 mutant. (D)

Quantitative RT-PCR analysis of LIC RNA levels in antisense

lines and overexpressing lines. Data are mean 6 SD (n = 3).

(TIF)

Figure S2 Comparative morphology of the lic-1 mutant and the

transgenic lines. (A) Gross morphologic features of LIC over-

expressors and the lic-1 mutant (40 days old). LIC-overexpressing

lines (OX1) and the lic-1 mutant showed dwarfism and erect

leaves. The antisense line 2 (AS2) and BR-deficient mutant d2 are

controls. Bar = 20 cm. (B) Quantification of leaf angles in the wild

type, lic-1 mutant and OX1; AS2 and d2 are controls. Data are

mean6SE of 50 measured plants.

(TIF)

Figure S3 Phenotypes of lic-1 mutant and LIC transgenic lines.

lic-1 mutant and LIC-overexpressing line 2 (OX2) show erect

leaves and antisense line 3 (AS3) an increased leaf angle.

(TIF)

Figure S4 BR marker genes expression in transgenic lines.

Quantitative RT-PCR analysis of the mRNA level of BR synthetic

genes D2, D11, BRD1 and the receptor gene BRI1 in the wild type,

LIC antisense line 2 (AS2) and lic-1 mutant. Data are mean 6 SD

(n = 3). *P,0.05 and **P,0.01 compared with the wild type as

determined by Student’s t test.

(TIF)

Figure S5 Rice root growth at different concentrations of BR. (A)

BR sensitivity of the lic-1 mutant and the LIC-overexpressing lines in

root growth. The upper panel represents treatment without BR, and

the bottom panel represents 1 mM BR treatment; OX1, LIC-

overexpressing line 1; AS2, LIC antisense line 2. Bar = 1 cm. (B)

Quantification of primary root length under different concentra-

tions of BR. Data are mean 6SD of root length in 30 plants. (C) BR

promoted root growth at low levels (,1 nM) and restrained root

elongation at high levels (.100 nM). Bar = 2 cm.

(TIF)

Figure S6 Identification of hybrid generations of a LIC antisense

line and a BZR1 RNAi line. (A) Identification of the BZR1 RNAi

vector and the LIC antisense vector in hybrid generations. H1, H2

and H3 represent hybrid generations and CK indicates the BZR1

RNAi line or the LIC antisense line as a positive control. (B)

Quantitative RT-PCR analysis of LIC and BZR1 RNA levels in

parent lines and hybrid generations. Data are mean 6 SD (n = 3).

(TIF)

Figure S7 Western blot analysis of protein expression in the

yeast cells. (A) LIC interacted with AtBIN2 and rice orthologs in

yeast cells. Left panel, LIC interacted with AtBIN2, OsGSK1 and

OsSKETHA in a yeast two-hybrid assay; pGADT7-DWF1– and

pGBDT7-GSR1–co-transformed yeast served as a positive control

[63] and AD– and BD vector–co-transformed yeast as a negative

control. Middle panel, mutated LIC failed to interact with BIN2/

GSK1/SKETHA, pGADT7-LICm- and pGBDT7-co-trans-

formed yeast served as a negative control. Right panel, yeast cells

transformed with a single protein served as a negative control. (B)

Western blot analysis with an anti-HA tag antibody. Protein was

extracted from yeast co-transformed with LIC/LICm/LICp and

GSK1 or yeast co-transformed with the AD and BD vectors. (C)

Immunoblotting analysis with an anti-Myc tag antibody. Protein

was extracted from yeast co-transformed with BIN2/GSK1/

SKETHA and LICm or yeast co-transformed the AD and BD

vectors.

(TIF)

Figure S8 EMSA to test LIC binding to the predicted motifs. (A)

Putative DNA motifs to which LIC binds (denoted as S1–14) as

predicted by use of microarray chip gene promoters and MEME

software (see Materials and Methods). (B) EMSA to illustrate LIC

binding to S1–3. Lane 1 shows the band shift caused by S1, lane 2

the band shift caused by S2, lane 3 the band shift caused by S3, and

lanes 4–6 unlabeled S1–3 (denoted as Co1-3), which served as

competitive probes that weakened the intensity of the shifted bands

of S1–3. Lanes 7–9, mutated S1–3, denoted as MS1 (GAAAATG),

MS2 (TCGAAAA,) and MS3 (CTAAAAT) respectively, eliminated

the shifted bands. (C) Putative DNA motifs to which LIC binds as

predicted from ChIP sequences. Letter probability of every site is

shown on the right. (D) LIC bound to the sequence CTCGC

marked as S. M1 (ATCGCG), M2 (CTCGCT) and M3 (CAAAAG)

were the mutated probes. Co represented the competitive unlabeled

S sequence.

(TIF)

Figure S9 Specificity of the anti-LIC antibody and the anti-

BZR1 antibody used in the ChIP assay. Left, western blot analysis

with the LIC antibody displayed one specific band for the total

protein fraction; LIC protein was decreased in antisense lines and

increased in overexpressing lines. Right, western blot with the

BZR1 antibody displayed one specific band for wild-type proteins.

(TIF)

Figure S10 Expression patterns of LIC and BZR1. (A) Expression

patterns of LIC and BZR1 in various organs in rice (S, shoot; R, root;

ST, stem; P, panicle; L, leaf; LS, leaf sheath). Data are mean 6 SD

(n = 3). (B) LIC and BZR1 expression patterns during seed

development and in leaves (Data analyzed by use of electronic

fluorescent pictographic software, http://www.bar.utoronto.ca/

efp/cgi-bin/efpWeb.cgi). The color scale illustrates the microarray

signal level. YL, young leaf; ML, mature leaf.

(TIF)

Figure S11 Phylogenic tree of rice LIC (Os06g49080) and related

proteins in other model species. The sequence of LIC was used in

BLAST searches of NCBI databases (http://130.14.29.110/blast/,

nr, est, httg, gss, and wgs databases, default values). Midpoint-

rooted neighbor-joining trees were constructed with full-length

protein sequences by use of MEGA 3.1 (http://www.megasoftware.

net/index.html) [64]. The variables were poisson correction,

pairwise deletion and bootstrap (1000 replicates; random seed).

Blue box: genes of dicots; red box: genes of monocots.

(TIF)

Table S1 Number of seeds per panicle and leaf angle for the

progenies of antisense line 2 and lic-1 hybrid lines.

(DOC)

Table S2 Phenotypes of LIC transgenic rice lines and gain-of-

function mutants.

(DOC)

Table S3 Sequences from the ChIP assay for motif searches.

(DOC)
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Table S4 Primers used in this study.

(DOC)
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