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Abstract 27 

The circadian clock measures and conveys daylength information to control rhythmic hypocotyl growth in 28 

photoperiodic conditions to achieve optimal fitness, but it operates through largely unknown mechanisms. 29 

Here, we show that Pseudo Response Regulators (PRRs) coordinate with the Evening Complex (EC), a 30 

transcriptional repressor complex within clock core oscillator, to specifically regulate photoperiodic 31 

hypocotyl growth in Arabidopsis thaliana. Intriguingly, a distinct daylength could shift the expression 32 

phase and extend the expression duration of PRRs. Multiple lines of evidence further demonstrated that 33 

PRRs directly bound the promoters of PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5 to repress 34 

their expression, hence PRRs act as transcriptional repressors of the positive growth regulatorss PIF4 and 35 

PIF5. Importantly, mutation or truncation of the TIMING OF CAB EXPRESSION 1 (TOC1) DNA binding 36 

domain, without compromising its physical interaction with PIFs, still caused long hypocotyl growth under 37 

short days, highlighting the essential role of the PRRs-PIFs transcriptional module in photoperiodic 38 

hypocotyl growth. Finally, genetic analyses demonstrated that PIF4 and PIF5 are epistatic to PRRs in the 39 

regulation of photoperiodic hypocotyl growth. Collectively, we propose that, upon perceiving daylength 40 

information, PRRs cooperate with EC to directly repress PIF4 and PIF5 transcription together with their 41 

post-translational regulation on PIFs activities, thus forming a complex regulatory network to mediate 42 

circadian clock-regulated photoperiodic growth. 43 

44 
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Introduction 45 

Seedlings of terrestrial flowering plants display diel rhythmic growth upon responding to 46 

recurring natural stimuli immediately after protruding from the soil. The photoperiod, i.e., the 47 

daylength, is the most prominent environmental factor that shapes plant architecture and 48 

determines growth phase transition. Photoperiod information, which reflects seasonal changes, 49 

can be processed by circadian clock-dependent mechanisms to shape the gene expression 50 

pattern, with an acrophase at a specific time of the day, thus to modulate a wide range of plant 51 

growth and developmental processes, including flowering time (Yanovsky and Kay, 2002; 52 

Valverde et al., 2004; Sawa et al., 2007; Sawa and Kay, 2011; Andres and Coupland, 2012; Lee 53 

et al., 2017). In particular, the seedling hypocotyl displays robust growth rhythms under certain 54 

photoperiodic conditions. The length of the hypocotyl is reversely associated with daylength, 55 

which has long been considered as a coordinative mechanism between the circadian clock and 56 

daily photoreception (Nozue et al., 2007; Niwa et al., 2009; Nomoto et al., 2012). Nevertheless, 57 

the regulatory network underlying this coordinative mechanism is largely unknown. 58 

Phytochrome-interacting factors (PIFs), a group of basic helix–loop–helix transcription 59 

factors (Huq and Quail, 2002), can profile the hypocotyl photoperiodic growth dynamics, and 60 

are regarded as converging regulators to explain the coincidence between external 61 

environmental cues and the circadian clock (Millar, 2016; Quint et al., 2016). Under 62 

photoperiodic conditions, the protein abundance and activity of PIFs, especially of PIF4 and 63 

PIF5, are concurrently regulated by light signaling and the circadian clock via a combination of 64 

transcriptional and post-transcriptional mechanisms (Fujimori et al., 2004; Shen et al., 2007; 65 

Nusinow et al., 2011; Nakamichi et al., 2012; Nieto et al., 2015; Soy et al., 2016; Zhu et al., 66 

2016; Martin et al., 2018). Light signals modulate PIF protein abundance by triggering physical 67 

interaction between PIFs and phytochromes and subsequent degradation of PIFs (Al-Sady et 68 

al., 2006; Shen et al., 2007), while the circadian clock mainly shapes the circadian 69 

transcriptional waves of PIF4 and PIF5 (Nusinow et al., 2011; Nakamichi et al., 2012; Nieto et 70 

al., 2015; Soy et al., 2016; Zhu et al., 2016; Martin et al., 2018). Thus, the diurnal regulation of 71 

PIF4 and PIF5 transcription plays a critical role in photoperiodic hypocotyl cell elongation. 72 
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The circadian clock Evening Complex (EC), which is composed of EARLY FLOWERING 4 73 

(ELF4), EARLY FLOWERING 3 (ELF3), and LUX ARRHYTHMO (LUX), inhibits PIF4 74 

and PIF5 expression in the early evening and the first part of night, thus directly allowing the 75 

circadian clock to diurnally regulate hypocotyl growth (Nusinow et al., 2011). As the 76 

transcriptional peak phase of PIF5 is ahead of PIF4 for about 2–4 h, when EC proteins have not 77 

yet highly accumulated, it raises a possibility that other clock components are also involved in 78 

the progressive repression of PIF4 and PIF5. Hence, the intricate regulation of PIF4 and PIF5 79 

transcription remains to be fully unraveled (Nusinow et al., 2011; Nakamichi et al., 2012; Liu et 80 

al., 2013; Liu et al., 2016; Zhu et al., 2016; Martin et al., 2018).  81 

The Arabidopsis thaliana Pseudo Response Regulator (PRR) gene family is composed of 82 

five members (PRR9, PRR7, PRR5, PRR3, and TIMING OF CAB EXPRESSION 1 (TOC1)), 83 

each of which peaks at a specific time of day in a consecutive manner from dawn to dusk 84 

(Matsushika et al., 2000; Nakamichi et al., 2010). PRR proteins were proposed to regulate 85 

photoperiodic hypocotyl elongation mainly via two pathways. One is the transcriptional 86 

regulation of PIF4 and PIF5 by PRR5 and PRR7 (Liu et al., 2013; Nakamichi et al., 2012), and 87 

the other is the transcriptional activation activities of PIFs which are tightly regulated by the 88 

circadian clock via physical interaction between PIFs and PRRs (Soy et al., 2016; Zhu et al., 89 

2016; Martin et al., 2018). Currently, the underlying mechanisms of the long hypocotyl 90 

phenotype of prr mutants in short-day (SD) conditions or in response to temperature are 91 

thought to be mainly due to their post-transcriptional regulation of PIFs via physical 92 

interactions and antagonistically with PIFs by binding to a set of co-targets, including 93 

PHYTOCROME INTERACTING FACTOR 3-LIKE 1 (PIL1), YUCCA 8 (YUC8), and 94 

CYCLING DOF FACTOR 5 (CDF5) (Martin et al., 2018; Soy et al., 2016; Zhu et al., 2016). In 95 

addition, TOC1 can physically interact with ELF3 (Huang et al., 2016), the bridging protein 96 

among EC, but it is still unclear whether ELF3 and TOC1 work in the same pathway or 97 

independently to regulate photoperiodic hypocotyl growth. Moreover, how PRRs respond to 98 

distinct daylength information at the transcriptional and post-transcriptional level and 99 
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subsequently transmit photoperiod information to control hypocotyl cell elongation is still 100 

largely unknown. 101 

Here, we show that PRRs and EC act additively in regulating photoperiodic hypocotyl 102 

growth in Arabidopsis, and daylength information can alter the expression phase and duration 103 

of PRRs. We further unveiled PIF4 and PIF5 as direct transcriptional targets of PRRs, and their 104 

transcriptional patterns were accordingly altered by daylength information via PRRs. 105 

Importantly, by using TOC1 DNA binding domain mutation or truncation alleles, we show that 106 

the PRRs-PIFs transcription module is essential for regulating hypocotyl growth in 107 

photoperiodic conditions. Together with the post-translational regulation of PIF abundance and 108 

activities by PRRs and EC, we thus propose a complex regulatory network that mediates 109 

circadian clock-regulated photoperiodic hypocotyl growth, by a combinatorial transcriptional 110 

and post-transcriptional mechanisms. 111 

Results 112 

PRRs Act Additively with EC to Regulate Photoperiodic Hypocotyl Growth 113 

Both PRRs and EC are involved in hypocotyl growth regulation (Sato et al., 2002; 114 

Kaczorowski and Quail, 2003; Yamamoto et al., 2003; Nusinow et al., 2011; Nieto et al., 2015; 115 

Soy et al., 2016; Zhu et al., 2016; Martin et al., 2018, Li et al., 2019). TOC1, the founding 116 

member of PRRs, can physically interact with an EC component ELF3 (Huang et al., 2016). 117 

Nevertheless, the relationship between PRRs and EC in regulating hypocotyl growth, 118 

especially under photoperiodic conditions, is unclear. To systematically address this question, 119 

we generated higher order Arabidopsis mutants between PRRs and EC components. After 120 

growth for 5 days at different conditions, we measured the hypocotyl length and found that 121 

toc1, prr5, toc1 prr5, and elf3 mutants displayed dramatically longer hypocotyl phenotypes 122 

under both short-day (SD, 8 h light / 6 h dark) and long-day (LD, 16 h light / 8 h dark) 123 

conditions relative to Col-0, but not under constant light (LL) conditions (Figure 1A-1F). 124 

Strikingly, the hypocotyls of toc1 elf3 and prr5 elf3 double mutants were significantly longer 125 

than those of the single mutants, suggesting that they act additively to regulate hypocotyl 126 

 www.plantphysiol.orgon March 24, 2020 - Published by Downloaded from 
Copyright © 2020 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


 

 7 

growth only under photoperiod conditions. Notably, the hypocotyl lengths of the toc1 prr5 elf3 127 

triple mutant were modestly but significantly longer than those of the toc1 prr5 and elf3 128 

mutants under both LD and SD conditions ((Fig. 1A-1D), further supporting the notion that 129 

PRRs and EC additively regulate hypocotyl growth. Since ELF3 has been shown to interact 130 

with PIF4 to regulate hypocotyl growth independent of EC (Nieto et al., 2015), we further 131 

examined the genetic relationship between PRRs and EC by using LUX, a DNA binding 132 

protein in EC (Hazen et al., 2005; Nusinow et al., 2011). Consistently, the toc1 prr5 lux triple 133 

mutant displayed significantly longer hypocotyls than either the toc1 prr5 or lux mutants, in 134 

both SD and LD conditions (Supplemental Fig. S1), further confirming that PRRs and EC 135 

additively regulate photoperiodic hypocotyl growth. In addition, the transcript phases of PRR9 136 

and PRR7 displayed an inverse pattern to that of EC, but the hypocotyls of the prr7 prr9 double 137 

mutant were significantly longer than that of Col-0 (Nakamichi et al., 2005), specifically under 138 

photoperiodic conditions, but not in constant light (Supplemental Fig. S2). Altogether, multiple 139 

lines of genetic evidence clearly demonstrated that PRRs act additively with EC to regulate 140 

hypocotyl growth under photoperiodic conditions. 141 

Daylength Information Alters the Expression Patterns of PRRs and EC 142 

In general, the hypocotyl length decreases with increasing daylength. However, the ratio of 143 

hypocotyl length in SD vs. LD conditions was significantly increased in the toc1 mutant 144 

compared to that in prr5, elf3, or Col-0 plants (Fig. 1A-1D). This prompted us to compare the 145 

expression patterns of TOC1 and other PRR family members under SD and LD conditions. 146 

Previously, it has been shown that the transcript and protein abundances of each PRR gene 147 

peaks sequentially from dawn to dusk in the order of PRR9, PRR7, PRR5, PRR3 and TOC1 148 

(Matsushika et al., 2000; Fujiwara et al., 2008; Martin et al., 2018). However, whether the 149 

distinct daylength information could change their mRNA or protein patterns remains unclear. 150 

By using a time-course reverse transcription quantitative PCR (RT-qPCR) assay and the 151 

publicly accessible database, we found that the expression pattern of TOC1 was overall shifted 152 

by about 4 h in SD vs. LD conditions, while the PRR5 mRNA expression pattern was not 153 

significantly altered by the daylength difference (Supplemental Fig. S3 and Supplemental Fig. 154 
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S4). Interestingly, when we compared the protein expression patterns of TOC1 and PRR5 155 

between SD and LD conditions by using previously generated TMG (TOC1 Mini Gene driven 156 

by its native promoter) and PRR5pro:PRR5-GFP transgenic lines (Mas et al., 2003; Fujiwara 157 

et al., 2008), we found that the duration and peak times of TOC1 and PRR5 proteins are highly 158 

variable under these two distinct conditions. This might have been caused by 159 

post-transcriptional regulation, given that the PRR5 mRNA pattern did not display a phase 160 

shift. Moreover, both PRR5 and TOC1 proteins were barely detectable at ZT20 in SD 161 

conditions, but were still present in an appreciable level at ZT20 in LD conditions (Fig. 162 

2A-2D). Remarkably, the high TOC1 protein level could even extend to ZT0 in the night under 163 

LD conditions (Fig. 2A, 2B). In addition, the protein abundance of two other PRR family 164 

members, PRR9 and PRR7, started to rise from ZT4, and persisted over the day time in both LD 165 

and SD conditions. The PRR7 protein was maintained at a higher level with increasing 166 

daylength (Fig. 2E-2H). Interestingly, among EC components, transcripts of LUX and ELF4 167 

displayed a similar shifted pattern as TOC1 in SD conditions, while ELF3 only showed an 168 

increased expression level without pattern shifting in SD conditions (Supplemental Fig. 169 

S4E-4G). Thus, it appeared that the daylength information could either shift the expression 170 

phase or extend the expression period of PRRs and EC at both the transcriptional and 171 

post-transcriptional levels, which might contribute to the daylength-dependent photoperiodic 172 

hypocotyl growth. 173 

PIF4 and PIF5 are Potential Common Transcriptional Targets of PRRs and EC 174 

To further elucidate the underlying mechanisms of how PRRs coordinate with EC to 175 

regulate photoperiodic hypocotyl growth, we identified their direct transcriptional targets, as 176 

both of them are transcription regulators (Gendron et al., 2012; Huang et al., 2012; Nakamichi 177 

et al., 2012). RNA-sequencing (RNA-seq) with 10-day old seedlings of toc1 prr5 grown under 178 

12 h light/12 h dark conditions was conducted with tissues harvested at ZT15; the exact same 179 

time point used for TOC1 ChIP-seq (Huang et al., 2012) and close to the time point for PRR5 180 

ChIP-seq (Nakamichi et al., 2012). In total, we identified 838 differentially expressed genes 181 

(DEGs) in the toc1 prr5 double mutant using 2-fold cut-off (FDR<0.05) compared to Col-0 182 
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(Fig. 3A, Supplemental Dataset 1). The randomly selected 4 up-regulated genes and 4 183 

down-regulated genes validated by RT-qPCR displayed similar expression patterns as that in 184 

the RNA-seq data (Supplemental Fig. S5). Notably, CIRCADIAN CLOCK ASSOCIATED 1 185 

(CCA1), LATE ELONGATED HYPOCOTYL (LHY), and GIGANTEA (GI), and some other 186 

core circadian clock genes, were among the 270 up-regulated genes, consistent with the fact 187 

that they are direct targets of TOC1 within the interlocked circadian clock oscillator (Huang et 188 

al., 2012). Functional assignment of the DEGs by gene ontology (GO) enrichment analysis 189 

further revealed that the DEGs were mainly involved in response to red or far-red light, 190 

response to light stimulus, circadian rhythms, and red/far-red light photo-transduction (Fig. 191 

3B), implicating a dual role for TOC1 and PRR5 in regulating the circadian clock and light 192 

signaling. Among them, we found that transcript levels of PIF4 and PIF5 were significantly 193 

increased in the toc1 prr5 mutant (Fig. 3C). Previous ChIP-Seq analysis identified 772 194 

TOC1-bound genes (Huang et al., 2012), 1021 PRR5-bound genes (Nakamichi et al., 2012), 195 

and 1096 PRR7-bound genes (Liu et al., 2013). As the PRRs play redundant roles in regulating 196 

photoperiodic hypocotyl growth, we thus compared the ChIP-seq data of PRR7, PRR5, and 197 

TOC1, and obtained 90 commonly bound genes (Fig. 3D, Supplemental Fig. S6). The 198 

interaction network analysis using the STRING database (http://string-db.org/) showed that the 199 

90 common genes could form a major cluster, including known circadian clock genes, such as 200 

CCA1, LHY, and GI, and genes involved in photomorphogenesis, including PIF4, PIL6/PIF5, 201 

and PHYTOCHROME B (PHYB) (Fig. 3E). The potential direct target genes of PRRs were 202 

further revealed by comparing our RNA-seq data with the PRR7/PRR5/TOC1 common target 203 

genes. Strikingly, PIF4 and PIF5 were found among the 11 overlapping genes (Supplemental 204 

Fig. S6, hypergeometric test, p < 3.5 × 10-9) between up-regulated genes in the toc1 prr5 mutant 205 

and the 90 common target genes, indicating that PIF4 and PIF5 were potential direct target 206 

genes of TOC1 and PRR5. Furthermore, when we compared the aforementioned 11 overlapped 207 

genes with the up-regulated genes in the lux-6 mutant, PIF4 and PIF5 were again among the 208 

only 4 common co-targets (Fig. 3F, 3G). Hence, PIF4 and PIF5 became promising target genes 209 

of EC and PRRs in mediating their regulation of photoperiodic hypocotyl growth. 210 
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PRRs directly Bind PIF4 and PIF5 Promoters to Repress Their Transcription 211 

As PIF4 and PIF5 are two potential common transcriptional targets of PRRs and EC, we 212 

determined whether PRRs could directly repress PIF4 and PIF5 transcription. Promoter 213 

analysis suggested that one potential TOC1 and PRR5 binding element, PIF4-G (G-box, 214 

GATATG) (Gendron et al., 2012), was found at -707 bp upstream of the PIF4 start codon, and 215 

two G-boxes, PIF5-G1 (G-box, GATATG) and PIF5-G2 (G-box, GATATG), are found at 216 

-1151 bp and -718 bp upstream of the PIF5 start codon, respectively (Fig. 4A). We then 217 

conducted electrophoretic mobility shift assays (EMSA) with the purified GST-tagged CCT 218 

domain of TOC1 and PRR5, which is the DNA-binding domain of PRRs (Gendron et al., 2012). 219 

Both GST-TOC1-CCT and GST-PRR5-CCT could efficiently bind the PIF4-G and PIF5-G2 220 

regions compared to GST alone (Fig. 4B), as well as bind the CCA1 promoter (as a positive 221 

control) (Supplemental Fig S7A), but not the PIF5-G1 region. Importantly, the binding could 222 

be abolished by the non-labeled competitive probe, suggesting that TOC1 and PRR5 could 223 

specifically bind the promoters of PIF4 and PIF5 (Fig. 4B and Supplemental Fig. S7A). Results 224 

of ChIP-qPCR analysis further confirmed that the amplicons containing the PIF4 promoter 225 

G-box and PIF5 promoter G2 regions were significantly enriched in TMG lines ranging from 226 

ZT12 to ZT20 and in PRR5:PRR5-GFP from ZT8 to ZT16 (Fig. 4C, 4D), in line with the TMG 227 

and PRR5 protein expression window. Similar binding enrichment was observed for the 228 

amplicons for the CCA1 promoter, but not the negative control ASCORBATE PEROXIDASE 3 229 

(APX3) (Supplemental Fig. S7B, 7C). These results are consistent with previous ChIP-seq 230 

studies (Huang et al., 2012, Nakamichi et al., 2012). Taken together, TOC1 and PRR5 could 231 

directly bind PIF4 and PIF5 promoters in vitro and in vivo. 232 

Whether TOC1 and PRR5 could directly repress PIF4 and PIF5 transcription was 233 

determined by monitoring the bioluminescence signals of PIF4pro:LUC and PIF5pro:LUC 234 

using well-established transient expression systems in the leaves of Nicotiana benthamiana 235 

and in Arabidopsis protoplast. Results of the transient expression analyses clearly indicated that 236 

the transcriptional activities of PIF4 and PIF5 could be repressed by PRRs (Fig. 4E-4H and 237 
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Supplemental Fig. S8). Collectively, our results supported the notion that PIF4 and PIF5 are 238 

direct transcriptional targets of PRRs. 239 

PRRs Cooperate with EC in Timing Photoperiodic Transcription of PIF4 and PIF5  240 

As PIF4 and PIF5 are the common transcriptional targets of PRRs and EC, and daylength 241 

could alter the expression patterns of PRRs and EC, we questioned whether PRR proteins could 242 

coordinate with EC in conveying daylength information to control photoperiodic hypocotyl 243 

growth through the timing of PIF4 and PIF5 transcription. To test this, PIF5pro:PIF5-HA 244 

transgenic plants were generated to investigate the temporal protein pattern of PIF5 under SD 245 

and LD conditions. Intriguingly, the PIF5 protein abundance was inversely associated with 246 

TOC1 and PRR5 protein abundance (Fig. 2A-2D) under both SD (Fig. 5A) and LD (Fig. 5B) 247 

conditions, consistent with the idea that TOC1 and PRR5 directly repressed PIF5 transcription. 248 

Similarly, PIF4 protein has been observed to accumulate during the light period and decrease in 249 

the dark period from ZT12 to ZT20, then increase before dawn under a short day but not under 250 

a 12 h light/12 h dark photoperiod. As PIF4 and PIF5 protein accumulation was associated well 251 

with their transcription, PIF4 and PIF5 transcript levels were examined in the toc1 prr5 double 252 

mutant and toc1 prr5 elf3 triple mutant. Results of RT-qPCR indicated that PIF4 and PIF5 253 

transcript levels were similar to that of Col-0 at the subjective day time in both toc1 prr5 and 254 

toc1 prr5 elf3 mutants, but modestly increased at the subjective early night, and more 255 

significantly accrued at late night, especially at ZT20 in both photoperiodic conditions (Fig. 256 

5C-5F). As EC represses PIF4 and PIF5 transcription from dusk to early night, PIF4 and PIF5 257 

transcript levels displayed a modest but consistent increase in the toc1 prr5 elf3 triple mutant 258 

compared to those in toc1 prr5 or elf3 mutants, especially under LD conditions (Fig. 5C-5F). 259 

Similarly, the transcript levels of PIF4 and PIF5 were also significantly elevated in prr7 prr9 260 

and prr5 prr7 prr9 mutants under both SD and LD conditions (Supplemental Fig. S9). 261 

Together, our results support a notion that PRRs in concert with EC repress the transcription of 262 

PIF4 and PIF5, hence to shape their transcriptional patterns in mediating circadian 263 

clock-regulated photoperiodic hypocotyl growth. 264 
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Direct Transcriptional Inhibition of PIF4 and PIF5 by TOC1 is Required for its 265 

Regulation of Photoperiodic Hypocotyl Growth 266 

As the physical interaction of PRRs with PIFs antagonizes PIFs function under a diurnal 267 

cycle (Martin et al., 2018; Soy et al., 2016; Zhu et al., 2016), a truncated TOC1 without the 268 

CCT DNA-binding domain (Gendron et al., 2012) was used to test if PRR-mediated PIF4/5 269 

repression was required in photoperiodic hypocotyl growth. Similar to the full-length TOC1, 270 

GFP-TOC1ΔCCT-NLS was predominantly localized in nuclear speckles both in the epidermal 271 

cells of infiltrated N. benthamiana leaves and in the hypocotyl cells of stable transgenic 272 

Arabidopsis plants (Supplemental Fig. S10). Importantly, the truncated TOC1 protein without 273 

its DNA binding domain could still physically interact with PIF4 and PIF5, with a similar 274 

affinity as full-length TOC1 (Fig. 6A and Supplemental Fig. S11A), as the CCT domain was 275 

dispensable in mediating TOC1-PIFs interaction in yeast (Zhu et al., 2016). However, the 276 

transcriptional repression of PIF4 and PIF5 by the truncated TOC1 protein without its CCT 277 

domain was severely compromised compared to the full-length TOC1 (Supplemental Fig. S12). 278 

Notably, overexpression of full-length TOC1, but not TOC1ΔCCT, could fully rescue the long 279 

hypocotyl phenotype of the toc1-21 mutant grown in SD conditions, even when the TOC1 280 

ectopic expression levels were comparable or lower than the endogenous TOC1 (Fig. 6B). 281 

Consistently, the transcript levels of PIF4 and PIF5 were significantly repressed by 282 

overexpression of full-length TOC1 but not TOC1ΔCCT (Fig. 6C). Compared to that in toc1-21 283 

mutants, the moderately shortened hypocotyl phenotypes in the TOC1ΔCCT transgenic lines 284 

was likely due to TOC1ΔCCT-PIFs interaction and sequestration of PIF function (Martin et al., 285 

2018; Soy et al., 2016; Zhu et al., 2016). 286 

A missense allele of toc1-1 caused by an A562V mutation in the TOC1 DNA binding 287 

domain (Strayer et al., 2000) was further employed to distinguish the direct transcriptional role 288 

of TOC1 on PIF4 and PIF5 from its post-translational regulation of PIFs via sequestration. 289 

Similar to TOC1ΔCCT, the TOC1 A562V protein could still physically interact with PIF4 and 290 

PIF5 like the wild-type TOC1 (Fig. 6D and Supplemental Fig. 11B). However, the TOC1 291 

A562V had much reduced ability to bind PIF4 and PIF5 promoters in the EMSA (Fig. 6E), 292 
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similar to the results of a previous report on the binding of the CCA1 promoter by TOC1 A562V 293 

(Gendron et al., 2012). As the toc1-1 mutant still displayed long hypocotyl phenotypes 294 

(Dowson-Day and Millar, 1999) under SD conditions (Fig. 6F), it further supported the idea 295 

that the TOC1-PIFs transcriptional module played a pivotal role in regulating photoperiodic 296 

hypocotyl growth. 297 

PIF4 and PIF5 are Epistatic to PRRs in Regulating Photoperiodic Hypocotyl Growth 298 

As PIF4 and PIF5 are direct PRR transcriptional targets, together with the PRR physical 299 

interaction with PIFs to sequester their activity (Martin et al., 2018; Soy et al., 2016; Zhu et al., 300 

2016), we proposed that PIF4 and PIF5 act as major downstream factors to mediate circadian 301 

clock-regulated photoperiodic hypocotyl growth. Thus, we determined if PIF4 and PIF5 were 302 

required for PRR-mediated circadian clock regulation of hypocotyl elongation by generating a 303 

variety of higher order mutants. In agreement with a previous report (Soy et al., 2016), the long 304 

hypocotyl phenotypes in toc1 and toc1 prr5 mutants could be partially reverted by a single 305 

introgression of pif4 under either LD or SD conditions. Moreover, the long hypocotyl 306 

phenotype in the toc1 prr5 mutant could be completely rescued to the wild-type (Col-0) level 307 

by an introgression of pif4 pif5 mutations under either LD or SD conditions (Fig. 7A-7D), 308 

indicating a redundancy of PIF4 and PIF5 in meditating photoperiodic hypocotyl growth. The 309 

hypocotyl length in various mutants including toc1, toc1 pif4, pif4, toc1 prr5, pif4 pif5, toc1 310 

prr5 pif4, and toc1 prr5 pif4 pif5, were indistinguishable from that of Col-0 under continuous 311 

light conditions (Fig. 7E-7F), further reinforcing the notion that the repression of PIF4 and 312 

PIF5 by PRRs at both the transcriptional and post-transcriptional levels is required to 313 

concurrently regulate photoperiodic hypocotyl growth by the circadian clock. Given a previous 314 

report showing that mutations of PIF4 and PIF5 inhibit the long hypocotyls of prr mutants 315 

(Martin et al., 2018; Soy et al., 2016) under SD conditions, our evidence further demonstrates 316 

that PIF4 and PIF5 function downstream of PRRs to mediate photoperiodic hypocotyl growth. 317 

Discussion 318 
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By sensing photoperiod, the plant circadian clock regulates a plethora of daily rhythmic 319 

physiological events (Yanovsky and Kay, 2002; Valverde et al., 2004; Sanchez and Kay, 2016). 320 

The hypocotyl displays a robust rhythmic elongation pattern under photoperiodic conditions by 321 

a coincidental mechanism between the circadian clock and external light signals (Nozue et al., 322 

2007; Niwa et al., 2009; Nomoto et al., 2012). Nevertheless, how the circadian clock 323 

coordinates with the external photoperiod to facilitate optimal hypocotyl growth remains 324 

largely unknown. PIF4 and PIF5 have been characterized as potential targets of PRR5 and 325 

PRR7 (Liu et al., 2013; Nakamichi et al., 2012). However, the temporal transcriptional 326 

regulation of PRR proteins to PIF4 and PIF5, especially under distinct photoperiodic cycles, 327 

are still largely unclear. In this study, we found that PRRs genetically act additively with EC to 328 

regulate photoperiodic hypocotyl growth. We further demonstrated that PRRs directly bound 329 

the promoters of PIF4 and PIF5 to repress their transcription, and the altered temporal patterns 330 

of PRRs by daylength information could subsequently change PIF4 and PIF5 mRNA 331 

expression patterns, thus mediating photoperiodic hypocotyl growth (Fig. 8). By using specific 332 

TOC1 alleles, our results unequivocally showed that the transcriptional regulation of PIF4 and 333 

PIF5 is critical for PRR-regulated photoperiodic hypocotyl growth. In addition to 334 

post-translational regulation of PIF abundance and activities by PRRs and ELF3 (Martin et al., 335 

2018; Nieto et al., 2015; Soy et al., 2016; Zhu et al., 2016), here we show that PRRs cooperate 336 

with EC to control PIF4 and PIF5 temporal transcription patterns which mediates the crosstalk 337 

between the circadian clock and light signaling to achieve optimal hypocotyl growth and fitness 338 

under photoperiodic conditions. 339 

Sensing and transmitting daylength information has long been proposed as an interplay 340 

between the circadian clock and external photoperiod, with mainly unclear mechanisms. 341 

Hypocotyls displays diel rhythmic growth patterns after emerging from the soil in natural 342 

photoperiodic conditions, but the underlying molecular mechanism remains unclear. 343 

Differential daylength information, i.e., a long day vs. short day, can drastically change the 344 

expression pattern and period of PRR transcripts and proteins, indicating that daylength 345 

information can be transmitted at least through PRRs and EC via both transcriptional and 346 
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post-transcriptional mechanisms. The altered expression pattern of PRRs, particularly for 347 

TOC1 and PRR5, subsequently causes altered expression of PIF4 and PIF5 transcripts and 348 

proteins, hence to affect daylength-dependent hypocotyl growth patterns (Fig. 5). The reason 349 

why PRRs and EC act additively on the regulation of PIF4 and PIF5 transcription could be 350 

explained by their differential binding sites within the PIF4 and PIF5 promoters, but not due to 351 

the physical interaction between TOC1 and ELF3 (Huang et al., 2016). Hence, the biological 352 

significance of TOC1 physically interacting with ELF3 awaits to be further explored. 353 

Intriguingly, daylength information does not alter either the transcript level or expression 354 

pattern of PRR5 (Supplemental Fig. S3B), but the overall expression pattern of PRR5 protein 355 

was shifted by about 4 h earlier in SD conditions (Fig. 2C, 2D), indicating that daylength 356 

information sensing and transmission also occurs at the post-transcriptional level for 357 

photoperiodic hypocotyl growth. A similar case has been observed for photoperiod-regulated 358 

flowering time in which the CONSTANS (CO) protein level is tightly controlled by a 359 

coincident mechanism between the circadian clock and photoperiod (Valverde et al., 2004; 360 

Song et al., 2012). It will be of great interest to decipher how daylength information affects the 361 

expression patterns of PRRs in future studies. 362 

The expression of PIF4 and PIF5 oscillates with a peak after dawn, and then decreases 363 

gradually (Nusinow et al., 2011). EC represses the expression of PIF4 and PIF5 at nighttime, 364 

but aside from EC, how PIF4 and PIF5 are regulated by other circadian clock components at 365 

the transcriptional level is still not clear. Our present findings here filled this knowledge gap, 366 

and we proposed that, in LD conditions, the extended expression time-frame and the shifted 367 

expression pattern together maximize the repression of PRRs on PIFs expression, thus 368 

inhibiting hypocotyl growth. While in SD conditions, PRR5 and TOC1 proteins do not 369 

accumulate before the subjective dawn range from ZT20 to ZT24, which causes high 370 

abundance of PIF4 and PIF5 to promote hypocotyl growth. Taken together, our findings 371 

revealed a key underlying mechanism by which the PRRs-PIF4/5 transcriptional module finely 372 

orchestrates circadian photoperiodic responsive hypocotyl growth in Arabidopsis. 373 
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Very recently, CCA1 and LHY, the two morning-phased circadian core components, were 374 

shown to recruit SHORT HYPOCOTYL UNDER BLUE 1 (SHB1) to promote PIF4 375 

transcription by directly binding to the PIF4 promoter (Sun et al., 2019). Our EMSA results 376 

(Fig. 3b, 5e and Supplemental Fig. 7) and previous evidence clearly demonstrated that PRRs 377 

can bind the G-box cis-elements of CCA1, PIF4, and PIF5 promoters to repress their 378 

transcription. Collectively, the transcription of PIF4 and PIF5 was intricately modulated by the 379 

circadian clock, among which CCA1 and LHY act as daytime transcriptional activators, while 380 

PRRs and EC cooperatively act as transcription repressors to sequentially repress PIF4 and 381 

PIF5 transcription (Fig. 6c). Meanwhile, PRRs and ELF3 also inhibit PIFs’ activities at the 382 

post-translational level by physically interacting with PIF proteins. Together, the complex 383 

regulatory network, integrating both transcriptional and post-transcriptional regulation of PRRs 384 

and EC on PIFs, collectively limits the function of PIFs from morning to early evening, to 385 

precisely time the higher growth rate in the late night. Intriguingly, GI, another key circadian 386 

clock protein, was recently reported to play a pivotal role in modulating light signaling through 387 

physical interaction with PIFs (Nohales et al., 2019). GI protein not only negatively regulates 388 

PIFs’ protein stabilities, but also occupies PIFs’ genomic target loci in the early evening 389 

(Nohales et al., 2019). Hence, it is conceivable that the circadian clock tightly coordinates 390 

photoperiodic hypocotyl growth by integrating multiple circadian regulation mechanisms on 391 

PIFs at both the transcriptional and post-transcriptional levels. As PIF4 and PIF5 serve as a 392 

central cellular signaling hub by integrating phytohormones, light signaling, and circadian 393 

signals to control many downstream physiological processes, such as senescence (Song et al., 394 

2014; Nohales et al., 2019), shade avoidance and temperature signaling (Ma et al., 2016; 395 

Pedmale et al., 2016), it will be of great interest in the future to investigate whether the 396 

PRRs-PIF4/5 transcriptional module plays other roles besides photoperiodic hypocotyl growth 397 

control. 398 

Materials and Methods 399 

Plant materials and growth conditions. Except where indicated, all of the Arabidopsis 400 

thaliana plants used in this study were in the Col-0 background, including WT, toc1-21 (Ding 401 
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et al., 2007), prr5-1 (Wang et al., 2010), prr5-1 prr7-11 (Yamashino et al., 2008), prr5-1 402 

prr9-10 (Yamashino et al., 2008), prr7-11 prr9-10 (Yamashino et al., 2008), prr5-1 prr7-11 403 

prr9-10 (Yamashino et al., 2008), elf3-1(Nusinow et al., 2011), lux-6 (Zhang et al., 2018), TMG 404 

(Mas et al., 2003), PRR5pro:PRR5-GFP (Fujiwara et al., 2008), PRR7pro:PRR7-GFP 405 

(Fujiwara et al., 2008), PRR9pro:PRR9-GFP (Fujiwara et al., 2008), pif4-2 (Leivar et al., 406 

2008), pif4-2 pif5-3 (CS68096). toc1-21 prr5-1, toc1-21 elf3-1, prr5-1 elf3-1, toc1-21 prr5-1 407 

elf3-1, toc1-21 prr5-1 lux-6, toc1-21 pif4-2, toc1-21 prr5-1 pif4-2, and toc1-21 prr5-1 pif4-2 408 

pif5-3 were generated by crossing. The sterilized Arabidopsis seeds were stratified at 4°C for 3 409 

days, and then transferred to a 22°C growth chamber with light/dark cycles of 12 h light/12 h 410 

dark, 16 h light/8 h dark, or 8 h light/16 h dark as indicated. 411 

 412 

Plasmids construction. For the transient transcriptional repression assays in Nicotiana 413 

benthamiana, the amplicons of PIF4 and PIF5 promoters from about 2000 base pairs upstream 414 

of their start codons were amplified from Col-0 genomic DNA, then were inserted into the 415 

promoter-free pLUC-N-1300 vector between the Pst I and Kpn I sites to generate the 416 

PIF4pro:LUC-N-1300 and PIF5pro:LUC-N-1300 constructs, respectively. To prepare the 417 

vectors of PIF4pro:LUC and PIF5pro:LUC for Arabidopsis protoplast transient expression 418 

analysis, the same sequences of PIF4 and PIF5 promoters were digested with BamH I and 419 

Bsu36 I, and then cloned into the pLUC-999 vector.  420 

 421 

Hypocotyl length measurements. Sterilized seeds were placed on MS medium (PhytoTech, 422 

M524) for 3 days of incubation at 4°C, then incubated in specific light photoperiod conditions 423 

(12 h light/12 h dark cycles, 16 h light/8 h dark, or 8 h light/16 h dark; white light: 200 424 

μmol·m-2·s-1, Digital light meter, TES-1332A) for 5 additional days. Seedlings were 425 

photographed and hypocotyl lengths were measured by using Image J software 426 

(http://rsb.info.nih.gov/ij). 427 

 428 
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Protein detection method for PRRs. Seedlings of TMG, PRR5pro:PRR5-GFP, 429 

PRR7pro:PRR7-GFP and PRR9pro:PRR9-GFP transgenic lines were grown under SD or LD 430 

conditions (8 h light/16 h dark, or 16 h light/8 h dark; light intensity: 200μmol·m-2·s-1, Digital 431 

light meter, TES-1332A) for 10 days, and samples were harvested in 4-h intervals during a 432 

24-hour cycle. Total proteins were extracted with IP buffer (50 mM Tris-Cl, pH 7.5, 150 mM 433 

NaCl, 0.5% Nonidet P-40 (v/v), 1 mM EDTA, 1 mM dithiothreitol, 1 mM 434 

phenylmethylsulfonyl fluoride, 5 μg/mL leupeptin, 1 μg/mL aprotinin, 1 μg/mL pepstatin, 5 435 

μg/mL antipain, 5 μg/mL chymostatin, 2 mM NaVO3, 2 mM NaF, 50 μM MG132, 50 μM 436 

MG115, 50 μM ALLN). Supernatants were resolved using an 8% SDS-PAGE gel. The 437 

respective proteins were detected by western blotting using GFP antibody (Abcam; ab6556). 438 

 439 

RNA-sequencing analysis. For the RNA-seq assays, plants were grown under 12 h light / 12 h 440 

dark conditions at 22°C for 10 days and harvested at ZT15. RNA-sequencing and differential 441 

gene expression analyses were performed at Bionova (Beijing, China). In brief, RNA quality 442 

was evaluated on a Bioanalyzer 2100 instrument (Agilent, Santa Clara, CA). Sequencing 443 

libraries were prepared following the protocol of the Directional RNA Library Prep Kit (NEB 444 

#E7760S). The 150 nt paired-end high-throughput sequencing was performed on an Illumina 445 

Hiseq X TEN. Low quality sequencing reads were removed. Clean reads were mapped to the 446 

Arabidopsis reference genome (TAIR10, www.arabidopsis.org) with Tophat2 447 

(https://ccb.jhu.edu/software/tophat/index.shtml) software, and differentially expressed genes 448 

(DEGs) were identified using edgeR in the R package 449 

(http://www.bioconductor.org/packages/release/bioc/html/edgeR.html) with Fold Change > 2 450 

and FDR < 0.05 between the case group sample and control group sample. Gene ontology (GO) 451 

enrichment analysis was performed using TopGO in the R package (http://bioconductor.org/). 452 

 453 

Reverse Transcription Quantitative PCR for gene expression analysis. Seedlings were 454 

grown under specific light photoperiod conditions (12 h light/12 h dark, 16 h light/8 h dark, or 8 455 

h light/16 h dark; light intensity: 200 μmol m2s-1) for 10 days, and samples were harvested in 456 
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4-h intervals during a 24-h period. Total RNA was extracted using TRIzol Reagent (Life 457 

Technologies) as described by the manual. One microgram RNA was used for reverse 458 

transcription with the PrimeScript RT Reagent Kit with gDNA Eraser (Takara). Quantitative 459 

PCR was performed using SYBR Green Real-Time PCR Master Mix (Toyobo, Osaka, Japan) 460 

according to the manufacturer’s instructions on a QuantStudio 3 instrument (Applied 461 

Biosystems, USA). The following PCR program was used: 95°C for 2 min, followed by 40 462 

cycles of 95°C for 15 s, 55°C for 15 s, and 72°C for 15 s, followed by a melting-curve analysis. 463 

Gene expression was normalized by the geometric mean of ACTIN2 and TUB4 expression as 464 

previously described (Li et al., 2019). Experiments were repeated with at least two biological 465 

and two technical replicates. Data represent means ± SD of two technical replicates. Primers 466 

used for quantitative PCR are listed in Supplemental Table 1. 467 

 468 

 469 

Transient transcriptional repression activity assay in N. benthamiana. Agrobacterium 470 

tumefaciens AGL carrying various fusion expression vectors (effector: GFP-TOC1, 471 

GFP-PRR5, GFP-PRR7, GFP-PRR9, or GFP; reporter: PIF4pro: LUC-1300, PIF5pro: 472 

LUC-1300, and CCA1pro: LUC-1300) were cultured overnight. Each reporter vector paired 473 

with the GFP-TOC1, GFP-PRR5, GFP-PRR7, GFP-PRR9, or GFP effector vector was then 474 

co-transformed into N. benthamiana leaves using a syringe infiltration method. The luciferase 475 

signal was detected using a CCD camera (LN/1300-EB/1, Princeton Instruments) 2 days after 476 

infiltration. The bioluminescence intensity of LUC signals was quantified by MetaMorph 477 

Microscopy Automation and Image Analysis Software (Molecular Devices, San Jose, United 478 

States). 479 

 480 

Arabidopsis protoplast transient expression analysis. Protoplasts were isolated from rosette 481 

leaves of four-week old Arabidopsis plants (Col-0). For transient expression assays, 200 μL of 482 

protoplast was transferred to a 2 mL microfuge tube containing 5 μg effector plasmid, 3 μg 483 

reporter plasmid, and 2 μg 35S::GUS plasmid which was used as an internal control. The 484 
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effector:reporter:GUS were co-transformed into protoplasts at a ratio of 5:3:2., and the 485 

LUC/GUS ratio was presented as normalized gene expression. PIF4pro:LUC-1300, 486 

PIF5pro:LUC-1300, and CCA1pro:LUC-1300 were used as reporters, and 35S:GFP-TOC1, 487 

35S:GFP-PRR5, 35S:GFP-PRR7, 35S:GFP-PRR9, and 35S: GFP were used as effectors. The 488 

protoplasts were incubated for 16–24 h at 22°C. The luminescence measurements were 489 

acquired with a luciferase assay system (Promega, E1500) on a GloMax 20/20 luminometer 490 

(Promega). The GUS activity was detected with 4-Methylumbelliferone glucuronide (MUG) 491 

substrate (Alfa) on a GloMax 20/20 luminometer. 492 

Chromatin Immunoprecipitation (ChIP) assays. ChIP assays were performed using TMG 493 

and PRR5pro:PRR5-GFP transgenic lines grown under 22°C in a growth chamber with 12 h 494 

light/12 h dark cycles for two weeks, and seedlings were harvested at 4-h intervals during a 495 

24-h period (ZT0, ZT4, ZT8, ZT12, ZT16, and ZT20) as noted. ChIP experiments were 496 

performed as described (Huang et al., 2012). GFP antibody (Invitrogen; ab11120) was used for 497 

immunoprecipitation. The immunoprecipitates were analyzed by qPCR. Data are presented as 498 

mean ± SD, n = 3 from biological replicates. Primers used in this assay are shown in 499 

Supplemental Table 1. 500 

 501 

Purified GST-tagged CCT domain of TOC1 and PRR5 proteins. GST-TOC1 or PRR5-CCT 502 

plasmids were transformed into Escherichia coli BL21 strain, induced with 1 mM IPTG and 503 

cultured overnight at 16°C. The cells were collected by centrifuging at 10,000 rpm for 10 504 

minutes, then the cells were resuspended in 10 mL extraction buffer (50 mM Tris-Cl, pH 8.0, 505 

250 mM NaCl, 5 mM EDTA, 1 mM phenylmethylsulfonyl fluoride, 5 μg/mL leupeptin, 1 506 

μg/mL aprotinin, 1 μg/mL pepstatin). Lysozyme was added and the reaction was incubated on 507 

ice for 30 minutes, then 100 μL 1M DTT and 1 mL 10% sarkosyl (w/v) were added and 508 

thoroughly mixed. Then, the lysate was sonicated until it became transparent. 2.3 mL 509 

Triton-X-100 was added and mixed for five minutes. After centrifuging at 10,000 rpm for 10 510 

minutes, the supernatant was incubated with 500 μL GST-resin at 4°C for 3 hours. The beads 511 

were washed with wash buffer (50 mM Tris-Cl, pH 8.0, 150 mM NaCl, 1 mM EDTA, 3 mM 512 
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dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, 0.5% Triton X-100 (v/v) for 5 times. The 513 

GST-resin was eluted with a reduced glutathione solution to obtain a GST-TOC1 or 514 

PRR5-CCT protein solution. 515 

 516 

EMSA. The Lightshift Chemiluminescent EMSA kit (Thermo Scientific) was used for EMSA. 517 

5 μL GST-TOC1-CCT, GST-PRR5-CCT or GST protein and 0.5 μL of each biotin-labeled 518 

probe was used in all assays. Protein and probe were incubated in 1× Lightshift binding buffer, 519 

0.05 μg/μL poly(dI-dC), 2.5% (vol/vol) glycerol, 0.05% Nonidet P-40 (v/v), 50 mM KCl, and 5 520 

mM MgCl2 for 1 h at 4°C. Six percent gels were used. Gel running, transfer, and imaging were 521 

done as described by the Lightshift kit as previously described (Gendron et al., 2012). 522 

 523 

Co-immunoprecipitation assay. Agrobacteria containing 35S::TOC1-GFP or TOC1 CCT 524 

domain deletions, 35S::PRR5-GFP or PRR5 CCT domain deletions, and CsVMV::PIF4-HA or 525 

CsVMV::PIF5-HA were co-infiltrated into 4-week-old N. benthamiana leaves. The infiltrated 526 

leaves were ground to a fine powder in liquid nitrogen after infiltration for 3 days. Total protein 527 

was extracted with ice-cold IP buffer (50 mM Tris-Cl, pH 7.5, 150 mM NaCl, 0.5% Nonidet 528 

P-40 (v/v), 1 mM EDTA, 1 mM dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, 5 μg/mL 529 

leupeptin, 1 μg/mL aprotinin, 1 μg/mL pepstatin, 5 μg/mL antipain, 5 μg/mL chymostatin, 2 530 

mM NaVO3, 2 mM NaF, 50 μM MG132, 50 μM MG115, 50 μM ALLN). The cleared 531 

supernatant was incubated with Protein A beads (Invitrogen, Cat no. 15918-014) with captured 532 

anti-GFP (Invitrogen; ab11120) antibody at 4℃ for 2 h. The immune complex was released 533 

from the resin by 6×SDS loading buffer. Supernatants were resolved using an 8% SDS-PAGE 534 

gel. GFP-tagged TOC1 and PRR5 and HA-tagged PIF4 and PIF5 were detected by western 535 

blotting using GFP antibody (Abcam; ab6556) and HA antibody (Roche; 3F10), respectively. 536 

 537 

Statistical analysis. Differences between means were statistically analyzed by one-way 538 

analysis of variance using Tukey’s b post hoc multiple comparison test (IBM SPSS Statistics 539 

Software) or Student’s t-test (Excel, Microsoft) as indicated in the figure legends. Statistically 540 
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significant differences were defined as those with p values < 0.05. Significance levels are 541 

indicated as * p < 0.05, ** p < 0.01, and *** p < 0.001. 542 

 543 

Accession numbers 544 

The Arabidopsis Genome Initiative numbers for the genes mentioned in this article are as 545 

follows: TOC1, AT5G61380; PRR5, AT5G24470; PRR7, AT5G02810; PRR9, AT2G46790; 546 

PIF4, AT2G43010; PIF5, AT3G59060; YUC8,  AT4G28720; IAA19, AT3G15540; ATHB2, 547 

AT4G16780; ELF3, AT2G25930; ELF4, AT2G40080; LUX, AT3G46640. RNA-seq data 548 

reported in this study have been deposited in the Gene Expression Omnibus database under 549 

accession number GSE99290. 550 

 551 

Supplemental Data 552 

Supplemental Figure S1. TOC1 and PRR5 regulate photoperiodic hypocotyl growth 553 

independent of LUX. 554 

Supplemental Figure S2. The hypocotyl phenotypes of prr57, prr59, prr79, and prr579 555 

mutants in different photoperiod conditions. 556 

Supplemental Figure S3. Time-course expression pattern of TOC1/PRR5 in short-day or 557 

long-day conditions. 558 

Supplemental Figure S4. Time-course expression pattern of PRRs and EC components in 559 

short-day or long-day conditions. 560 

Supplemental Figure S5. Validation of RNA-seq results by reverse transcription quantitative 561 

PCR. 562 

Supplemental Figure S6. PIF4 and PIF5 were found among the 11 overlapping genes 563 

between up-regulated genes in the toc1 prr5 mutant and co-bound genes by TOC1, PRR5, and 564 

PRR7. 565 

Supplemental Figure S7. TOC1 and PRR5 bind the CCA1 promoter but not the APX3 566 

promoter. 567 
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Supplemental Figure S8. PRR7 and PRR9 directly repress PIF4 and PIF5 transcription. 568 

Supplemental Figure S9. The transcriptional pattern of PIF4 and PIF5 in prr mutants under 569 

different photoperiod conditions. 570 

Supplemental Figure S10. Subcellular localization of GFP-TOC1 and 571 

GFP-TOC1ΔCCT-NLS proteins. 572 

Supplemental Figure S11. Physical interactions between TOC1, TOC1ΔCCT, TOC1-A562V, 573 

and PIF5. 574 

Supplemental Figure S12. The transcriptional inhibition of PIF4 and PIF5 by TOC1ΔCCT 575 

was significantly attenuated. 576 

Supplemental Table S1. Primers used in this study. 577 

Supplemental Dataset S1. The differentially expressed genes (DEGs) in the toc1 prr5 double 578 

mutant identified by RNA-seq. 579 
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 586 

Figure legends 587 

Figure 1. TOC1 and PRR5 coordinate with EC to regulate photoperiodic hypocotyl growth. A, 588 

Hypocotyl phenotypes of Col-0, toc1, elf3, toc1 elf3, prr5, prr5 elf3, toc1 prr5, and toc1 prr5 589 

elf3 seedlings grown under short-day conditions (8L/16D) for 5 days after germination as 590 

noted. Scale bar, 5 mm. B, Quantitative analysis of the hypocotyl length of the seedlings shown 591 

in A. Different letters indicate statistically significant differences among averages by Tukey’s b 592 

test (p < 0.05). Data are the means ± SD of more than 15 seedlings. C, Hypocotyl phenotypes of 593 

Col-0, toc1, elf3, toc1 elf3, prr5, prr5 elf3, toc1 prr5, and toc1 prr5 elf3 seedlings grown under 594 
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long-day conditions (16L/8D) for 5 days after germination as noted. Scale bar, 5 mm. D, 595 

Quantitative analysis of the hypocotyl length of the seedlings shown in (C). Different letters 596 

indicate statistically significant differences among averages by Tukey’s b test (p < 0.05). Data 597 

are the means ± SD of more than 15 seedlings. E, Hypocotyl phenotypes of Col-0, toc1, elf3, 598 

toc1 elf3, prr5, prr5 elf3, toc1 prr5, and toc1 prr5 elf3 seedlings grown under continuous white 599 

light conditions for 5 days after germination as noted. Scale bar, 5 mm. Seedling images in A, C 600 

and E were digitally abstracted and multiple images were made into a composite for 601 

comparison. F, Quantitative analysis of the hypocotyl length of the seedlings shown in (E). 602 

Different letters indicate statistically significant differences among averages by Tukey’s b test 603 

(p < 0.05). Data are the means ± SD of more than 15 seedlings. 604 

 605 

Figure 2. PRR protein expression patterns in differential photoperiod conditions. 606 

A to H, Immunoblots showing TOC1/PRR5/ PRR7/ PRR9 protein abundance in seedlings of 607 

TMG, PRR5pro:PRR5-GFP, PRR7pro:PRR7-GFP and PRR9pro:PRR9-GFP, respectively, 608 

grown in short day or long day conditions for 10 days. Coomassie Brilliant Blue (CBB) staining 609 

indicates the protein loading amount. Data are representative of three biological replicates with 610 

similar results. 611 

Figure 3. PIF4 and PIF5 are potential direct transcriptional targets of TOC1 and PRR5. A, 612 

Differentially expressed genes (DEGs) between the toc1 prr5 mutant and wild-type Col-0 in 613 

RNA-seq. The samples were harvested at ZT15 from 10-day-old seedlings grown in 12 h 614 

light/12 h dark photocycles. B, Gene ontology (GO) analysis of the overlapping genes between 615 

upregulated DEGs in the toc1 prr5 mutant and the bound genes by TOC1. C, Expression 616 

profiles of PIF4 and PIF5 in the toc1 prr5 mutant. Data from RNA-seq. D, Venn diagram 617 

showing the number of common genes bound by TOC1, PRR5, and PRR7. E, Protein 618 

interaction network analysis of the 90 co-bound genes by TOC1, PRR5, and PRR7 in (D) using 619 

the STRING database (http://string-db.org/), showing a major cluster including PIF4, PIF5, 620 

and other known circadian core components. Colored nodes: query proteins and first shell of 621 

interactors; white nodes: second shell of interactors; empty nodes: proteins of unknown 3D 622 
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structure; filled nodes: some 3D structure is known or predicted. Edges represent 623 

protein-protein associations; light blue edges: from curated databases; purple edges: 624 

experimentally determined; green edges: gene neighborhood; dark blue: gene co-occurrence; 625 

yellow edges: text mining; dark edges: co-expression; light purple edges: protein homology. F, 626 

Venn diagram showing the number of overlapping genes among the TOC1, PRR5, and PRR7 627 

co-bound genes, upregulated DEGs in the toc1 prr5 mutant, and upregulated DEGs in the lux-6 628 

mutant. G, Heatmap showing 4 common co-targets in upregulated DEGs in toc1 prr5 and lux-6 629 

mutants. Scale represents log2 (fold change). 630 

Figure 4. TOC1 and PRR5 directly bind the PIF4 and PIF5 promoters to repress their 631 

transcription. A, Schematic diagram of the promoter regions of PIF4 and PIF5. Orange boxes 632 

represent the putative G-box elements. G, G1, and G2 represent the respective DNA fragments 633 

used for generating EMSA probes and ChIP-qPCR detection. B, EMSA with the CCT domain 634 

of TOC1 and PRR5 incubated with a probe designed for the PIF4-G, PIF5-G1, and PIF5-G2 635 

regions of the PIF5 gene as shown in (A), and 100-fold unlabeled competitor (100×). GST 636 

alone was used as a negative control. Arrowheads mark the shifted bands. C and D, 637 

Time-course ChIP-qPCR assay showing that TOC1 and PRR5 bind to the PIF4-G (C) and 638 

PIF5-G2 (D) regions diurnally, which was well associated with their respective protein 639 

abundances. Data are the means ± SD. E, Transient transcriptional expression analysis 640 

showing that PIF4 and PIF5 were repressed by TOC1 and PRR5 in epidermal cells of N. 641 

benthamiana leaves. CCA1pro:LUC was used as a positive control. Data are representative of 642 

three biological replicates with similar results. Leaf images were digitally abstracted and 643 

multiple images were made into a composite for comparison. F, Quantification of 644 

bioluminescence intensity as shown in (E). Data are the means ± SD. The asterisks denote 645 

statistically significant differences among means, *p < 0.05, **p < 0.01, ***p < 0.001 by 646 

Student’s t-test. G and H, Transient transcriptional expression assay in Arabidopsis protoplasts. 647 

A schematic diagram of effector and reporter vectors is shown in (G). Respective quantification 648 

of relative LUC/GUS activity is shown in (H). The relative LUC/GUS activity in protoplasts 649 

co-transformed with GFP and reporter vector was defined as 1. CCA1pro:LUC was used as a 650 

 www.plantphysiol.orgon March 24, 2020 - Published by Downloaded from 
Copyright © 2020 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


 

 26 

positive control, while 35S:GUS was used as an internal control. Data are the means ± SD. The 651 

asterisks in (H) denote statistically significant differences among means, *p < 0.05, **p < 0.01, 652 

***p < 0.001 by Student’s t-test . 653 

Figure 5. TOC1 and PRR5 coordinate with EC to transmit daylength information for shaping 654 

PIF4 and PIF5 transcription. A and B, Immunodetection of PIF5 protein levels in 655 

PIF5pro:PIF5-HA transgenic seedlings. Extracts from seedlings grown in short day (A) and 656 

long day (B) conditions for 10 days. CBB staining indicates the protein loading. Data are 657 

representative of three biological replicates with similar results. C and D, RT-qPCR analysis 658 

showing PIF5 transcript levels in Col-0, toc1 prr5, elf3, and toc1 prr5 elf3 seedlings grown for 659 

10 days in short day (C) or long day (D) conditions. E and F, RT-qPCR analysis showing PIF4 660 

transcript levels in Col-0, toc1 prr5, elf3, and toc1 prr5 elf3 seedlings grown for 10 days in 661 

short day (E) and long day (F) conditions. From (C) to (F), data are the means ± SD., white and 662 

black rectangles below the graphs represent day and night respectively. 663 

Figure 6. Direct transcriptional inhibition of PIF4 and PIF5 by TOC1 is required for its 664 

regulation of photoperiodic hypocotyl growth. A, Physical interactions between TOC1, 665 

TOC1ΔCCT (1-532aa)-NLS, and PIF4 in vivo were detected by co-immunoprecipitation after 666 

transient co-expression in N. benthamiana. B Hypocotyl phenotypes of toc1-21, GFP-TOC1/ 667 

toc1-21, and GFP-TOC1ΔCCT-NLS / toc1-21 transgenic seedlings grown under short day 668 

conditions (8L/16D) for 5 days after germination. Seedling images were digitally abstracted 669 

and multiple images were made into a composite for comparison. The protein levels of 670 

GFP-TOC1 and GFP-TOC1ΔCCT-NLS in these transgenic seedlings were also detected by 671 

immunoblot. Representative seedlings were photographed as shown in the left panel, and the 672 

hypocotyl lengths of the seedlings shown in the left panel were quantified and are shown in the 673 

right panel. Scale bar, 5 mm. Data are the means ± SD of more than 20 seedlings. Different 674 

letters indicate statistically significant differences among averages by Tukey’s b test (p < 0.05). 675 

C, RT-qPCR analysis of PIF4 and PIF5 expression in toc1-21, GFP-TOC1 toc1-21, and 676 

GFP-TOC1ΔCCT-NLS toc1-21 transgenic seedlings grown for 10 days in short day conditions 677 
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at ZT12. Data are the means ± SD. The asterisks denote statistically significant differences 678 

among means, *p < 0.05, **p < 0.01, ***p < 0.001 by Student’s t-test. D, Physical interaction 679 

between TOC1-A562V and PIF4 was detected by co-immunoprecipitation after being 680 

transiently co-expressed in leaves of N. benthamiana. The immunoprecipitates with human IgG 681 

beads were analyzed by immunoblot with anti-PAP or anti-HA antibody as indicated. E, EMSA 682 

with CCT and CCT-A562V of TOC1 and GST incubated with a probe designed to the PIF4-G 683 

and PIF5-G2 regions, and 100-fold unlabeled competitor (100×). Arrowheads mark the shifted 684 

bands. F, Hypocotyl phenotypes of wild type (C24 ecotype) and toc1-1 grown for 5 days in 685 

short day conditions. Representative seedlings were photographed (left panel) and measured 686 

(right panel). Data are the means ± SD of more than 20 seedlings. The asterisks denote 687 

statistically significant differences among means, ***p < 0.001 by Student’s t-test. 688 

 689 

Figure 7. PIF4 and PIF5 are epistatic to TOC1 and PRR5 for photoperiodic hypocotyl growth. 690 

A and B, Hypocotyl phenotypes of Col-0, toc1, pif4, toc1 pif4, toc1 prr5, toc1 prr5 pif4, pif4 691 

pif5, and toc1 prr5 pif4 pif5 seedlings (5 DAG) grown under short day conditions (8L/16D). C 692 

and D, Hypocotyl phenotypes of Col-0, toc1, pif4, toc1 pif4, toc1 prr5, toc1 prr5 pif4, pif4 pif5, 693 

and toc1 prr5 pif4 pif5 seedlings (5 DAG) grown under long day conditions (16L/8D). E and F, 694 

Hypocotyl phenotypes of Col-0, toc1, pif4, toc1 pif4, toc1 prr5, toc1 prr5 pif4, pif4 pif5, and 695 

toc1 prr5 pif4 pif5 seedlings (5 DAG) grown under continuous white light conditions. 696 

Representative seedlings were photographed as shown in (A), (C) and (E). Seedling images 697 

were digitally abstracted and multiple images were made into a composite for comparison. 698 

Scale bar, 5 mm. Hypocotyl lengths of the seedlings were measured and quantified as shown in 699 

(B), (D) and (F). Different letters indicate statistically significant differences among means by 700 

Tukey’s b test (p < 0.05). Data are the means ± SD of more than 15 seedlings.  701 

Figure 8. A proposed working model for PRR-PIF4/5 transcriptional module-mediated 702 

photoperiodic hypocotyl growth. PSEUDO RESPONSE REGULATORs (PRRs), as core 703 

circadian clock components, can directly and sequentially bind the promoters of 704 

 www.plantphysiol.orgon March 24, 2020 - Published by Downloaded from 
Copyright © 2020 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


 

 28 

PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5 to repress their transcription 705 

in an independent manner with Evenging Complex. Diurnal rhythms of PIF4/5 protein 706 

abundance are determined by the coordination of light signaling-mediated protein stability and 707 

circadian clock-regulated transcriptional expression. Hence, TOC1 and other PRRs represent a 708 

primary molecular node between the circadian clock and photoperiod to control photoperiodic 709 

hypocotyl growth. 710 
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