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Abstract Recent rapid progress in plant science and

biotechnology in China demonstrates that China’s stronger

support for funding in plant research and development

(R&D) has borne fruit. Chinese groups have contributed

major advances in a range of fields, such as rice biology,

plant hormone and developmental biology, genomics and

evolution, plant genetics and epigenetics, as well as plant

biotechnology. Strigolactone studies including those iden-

tifying its receptor and dissecting its complex structure and

signaling are representative of the recent researches from

China at the forefront of the field. These advances are

attributable in large part to interdisciplinary studies among

scientists from plant science, chemistry, bioinformatics,

structural biology, and agronomy. The platforms provided

by national facilities facilitate this collaboration. As well,

efficient restructuring of the top–down organization of state

programs and free exploration of scientists’ interests have

accelerated achievements by Chinese researchers. Here, we

provide a general outline of China’s progress in plant R&D

to highlight fields in which Chinese research has made

significant contributions.
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China’s research environment promotes rapid growth

in plant R&D

Enough food supply is always one of the most important

issues for the government in China because of its huge

population. On the other hand, dwindling areas of arable

lands and global climate change have challenged amount of

the agriculture production. Therefore, Chinese government

always has strongly supported the agriculture sciences, as

well as plant sciences during the state development.

Plant molecular biology has come into a new phase in

China (Chen et al. 2006), compared with the last wave,

which involved plant tissue culture and its application on

main crops, economically important plants, ornamental

plants and tree species in the 1980–1990s. Plant research

groups at institutes and universities are distributed mainly

in five key areas of China: Beijing, Shanghai, Wuhan,

Guangdong province and China’s western region, such as

Yunnan province due to its rich biodiversity and plant

resources. This distribution pattern corresponds to the one

described by Prof. Tang Peisong in 1983 (Tang 1983), but

there is now a larger population of scientists compared with

that in 1980s. As a marker of the progress that has been

made, original scientific research articles from Chinese

laboratories published in international peer-reviewed jour-

nals showed a great change not only in total number but

also in quality. In the past 10 years, publications in main-

stream journals (those with an impact factor higher than

five) from mainland Chinese groups increased more than

4.6-fold (Fig. 1). In particular, papers in the top journals

such as Nature, Science, Cell and their sister journals
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significantly increased. Furthermore, there were more than

40 research articles from Chinese groups in The Plant Cell

in 2012. The National Conference on Plant Biology, held

annually, is jointly organized by the Chinese Society of

Plant Biology, the Botanical Society of China, the Chinese

Society of Genetics, the Chinese Society of Cell Biology,

and the Chinese Society of Crop Sciences.

Rice biology is a good example illustrating the speedy

progress of research taking place in China. In addition to

rice genome sequencing and genome-wide association

studies, more than 140 agronomical important genes

involved in growth and development, pest resistance and

stress tolerance, especially for high-yield traits, were

functionally identified (Zuo and Li 2013). More than 2/3

key genes which involved in rice grain yield and published

in the top journals have been identified by Chinese groups.

Another example is plant reproductive biology, for which

the increase of publication numbers from Chinese groups

was clearly faster than for plant biology as a whole (Fig. 2)

(data from Prof Hong Ma of Fudan University). Percentage

of the publication number from Chinese groups in the

global total grew up to about 20 % from 7 % in the past

decade. In plant biotechnology area, besides plant tissue

culture, great achievements have been made in transgenic

plants.

China’s stable and high-speed economic development

has supported greater funding for scientific research. The

total funding for R&D reached up to 2.0 % of the Gross

Domestic Product (GDP) in 2012, although percentage of

funding for basic research was still lower. Plant science and

its related fields have been areas of concern for the gov-

ernment because China perennially faces the problem of

ensuring sufficient food supply to its huge population. As a

Chinese economic development initiative, funding for plant

R&D has been increased rapidly in the last decade (Fig. 3).

The funding comes mainly from the National Natural

Science Foundation of China (NSFC), the state major basic

research program (973 program)and the national high-tech

R&D program (863 Program) supported by the Ministry of

Science and Technology, with additional R&D funding

from the Chinese Academy of Sciences (CAS) and the

related ministries. Notably, funding from the NSFC, which

supports only basic research, has grown fivefold in the past

5 years. The NSFC has also launched a series of special

Fig. 1 Annual plant science

publications from China.

Annual number of plant science

publications originating from

China between 2004 and 2012,

based on a sample of

representative journals that

included Nature, Science, Cell

and their sister journals, PNAS,

EMBO J, The Plant Cell, Plant

Physiology, The Plant Journal,

PLoS Biology, PLoS Genetics

and others with high impact (ISI

impact factor greater than 5)

Fig. 2 Funding trends for plant

Science in China over the

previous decade (2003–2012).

The trends in plant science

funding (exchanged into US

dollars) by the NSFC, the state

major basic research program

(973) and the High-tech

program (863)
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major research plans, including those focusing on plant

hormones (2008–2017) and genetic networks of complex

traits in crops (2013–2020). Each plan has a budget of

150–200 million Chinese yuan (about 24–32 million USD).

Besides, the national major R&D program for transgenic

plants and animals [Phase I (1999–2005); Phase II

(2007–2020)] will have total budget of 24 billion Chinese

yuan (3.9 billion USD), and has promoted broad scientific

research and industrialization. It includes five main crops:

cotton, rice, maize, wheat, and soybean. Recently, the CAS

launched a strategic priority research program (2013–2018)

with designer breeding by molecular modules mainly

focusing on rice and wheat. It is clear that the plant species

used in the experiments have been gradually migrated from

Arabidopsis to rice and other main crops, according to the

national food supply needs. Overall, increasing funding

from the Chinese government will continue to promote

plant science and keep a balance between subject area

frontiers and national needs in China.

Genomic and genetic studies are bellwethers of rapid

growth in plant science in China

Technical developments in DNA sequencing, proteomics

and bioinformatics, as well as plant genetic resources

including wild rice and cultivars, and T-DNA insertion

lines have shed light on a range of research fields in China

(Guo et al. 2006; Wan et al. 2009). Following rice genome

sequencing work (Feng et al. 2002; Goff et al. 2002),

Chinese groups have published a series of plant genome

sequences, such as cucumber (Huang et al. 2009), Chinese

cabbage (Wang et al. 2011), potato (Xu et al. 2011),

Setaria italica (Zhang et al. 2012), Gossypium raimondii

(Wang et al. 2012a), watermelon (Guo et al. 2012), Citrus

sinensis (Xu et al. 2012b), Pyrus bretschneideri Rehd. (Wu

et al. 2013), salt-tolerant plant Thellungiella salsuginea

(Wu et al. 2012), kiwifruit (Actinidia chinensis) (Huang

et al. 2013), etc. (some of them collaborated with foreign

laboratories). Chinese scientists involved in the tomato

genome consortium also participated the sequencing

tomato genome (Zouine et al. 2012). Genomic and evolu-

tionary analyses of rice, wheat, potato, cucumber, and plum

blossom have been carried out (Jia et al. 2013; Jiao et al.

2012; Ling et al. 2013; Qi et al. 2013; Xiang et al. 2010).

Based on genome sequences from 446 geographically

diverse accessions of the wild rice species, a rice genome

variation map revealed the origin and evolution of culti-

vated rice (Huang et al. 2012). Cucumber genomic varia-

tion map suggests one of the 112 putative domestication

sweeps in these regions which contains a gene involved in

the loss of bitterness in fruits, an essential domestication

trait of cucumber (Qi et al. 2013). Particularly notable

accomplishments include the publishing in Nature of draft

genomes of wheat A (Triticum urartu) and D (Aegilops

tauschii) (Jia et al. 2013; Ling et al. 2013). These draft

genome sequences offer diploid references for polyploid

wheat genomes, as well as providing insight into the

environmental adaptation of bread wheat, and can aid in

understanding the large and complicated genomes of wheat

species. This progress in genome biology has been enabled

by improvements in capacity for sequencing and compu-

tational developments, as well as administration and

cooperation between companies and institutions (such as

CAS, CAAS, universities, and BGI).

High-throughput approaches such as proteomics and

transcriptomics have promoted the exploration of funda-

mental plant biological processes. In the early 2000s, high-

throughput technical platforms based on mass spectra were

established in institutions such as the Institute of Botany,

Fig. 3 Publications in plant

reproductive and development

biology from China (From Dr.

Hong Ma, Fudan University).

Annual number of plant science

publications originating from

China from 2004 to 2013, based

on a sample of the international

journals. The dashed or hollow

frame represents supposed value

based on the development

trends
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the Beijing Institute of Genomics, CAS, the Beijing

genomics institute (BGI), etc. Absolute quantitation of

isoforms of post-translationally-modified proteins has been

performed in transgenic organisms (Li et al. 2012). In the

past 10 years, 160 groups from 76 institutions in China

have published 280 papers on 84 species, including

Arabidopsis, rice, wheat, cotton, soybean, maize, and

poplar, in this research area. In particular, mechanisms of

polar cell growth of pollen tubes, cotton lint and root hairs

have been explored by proteomics approaches (Dai et al.

2007; Pang et al. 2010; Xu et al. 2008). Currently, pro-

teomics research teams are working to detail networks of

protein interactions including network modifications during

growth and development and responses to the environment.

The state major basic research programs (973) for crops

include: rice functional genomics and designer breeding by

molecular modules, molecular biology of photosynthesis

and biological nitrogen fixation, molecular mechanism of

plant reproduction and their hormonal regulation, molec-

ular basis of high-efficiency utilization of N and P by crops,

molecular basis of pest resistance and stress tolerance,

functional genomics of cotton fiber development and

quality improvement, molecular biology of wood forma-

tion and tree breeding (Populus, Larix), plant secondary

metabolism and molecular basis of quality improvement in

main vegetables and fruits, molecular regulation of fatty

acid biosynthesis in rapeseed, molecular improvement of

Cassava, genetics of crop germplasms, etc.

The projects mainly focus on main cereals, such as rice,

wheat, maize, and important vegetables, fruit species and

woody plants. The progress has been accelerated by func-

tional genomics of crops. For example, functional

genomics projects in rice have produced a series of

breakthroughs. Yield and fertility are key traits of interest

for both rice production and basic research. Of rice yield

studies involving seed size, seed number and tillers, the

publication from Chinese groups represent about 64 % of

the total published in the top journals (impact factor higher

than 10). They reported that rice architecture traits (such as

tillering and panicle type) affecting yield are controlled by

key components such as MOC1/LS/LAS, TAD1, and TE

that form a complex involved in APC/C in the cell cycle

(Lin et al. 2012; Xu et al. 2012a). In addition, Li’s group

demonstrated that a point mutation in OsSPL14 perturbs

OsmiR156-directed regulation of OsSPL14, generating an

‘ideal’ rice plant with reduced tiller number, increased

lodging resistance and enhanced grain yield. Further, Hu-

ang et al. (2009) showed that a DEP1 dominant allele

causes shorter inflorescence internodes, more grains per

panicle, and a consequent increase in grain yield. Chinese

groups also found that artificial selection of an amino acid

substitution in PROG1 during domestication led to the

transition from the wild rice plant architecture, and affected

erect growth and grain yields in cultivated rice (Jin et al.

2008; Tan et al. 2008). It was also reported that the rice

GIF1 gene encoding a cell wall invertase is required for

carbon partitioning during early grain filling, which is of

potential use in breeding (Wang et al. 2008).

Some genetic materials have been used in traditional

breeding and rice production in China, despite lack of

knowledge of the underlying molecular mechanisms. In

recent years, a number of such mysteries have been clari-

fied by Chinese researchers. Chinese super hybrid rice

depending on male-sterile lines has been widely used in

rice production not only in China but also in other countries

for decades. Molecular studies revealed that rice cyto-

plasmic male sterility (CMS)-related cytoplasmic–nuclear

incompatibility is driven by a detrimental interaction

between a newly evolved mitochondrial gene (WA352) and

a conserved, essential nuclear gene (Cox11) (Luo et al.

2013; Zuo and Li 2013). Another example is photoperiod-

sensitive male sterility (PSMS), which has also been used

in rice breeding since the 1980s (Ding et al. 2012). As well,

a killer–protector system at the S5 locus encoded by three

tightly linked genes regulates fertility in indica-japonica

hybrids, the information may aid in rice genetic improve-

ment (Yang et al. 2012). The parallel-sequential divergence

evolutionary genetic model in the hybrid sterility in rice

involves three tightly linked loci, exemplified by a killer–

protector system formed of mutations in two steps (Ouyang

et al. 2011). The CSA-based photoperiod-sensitive male-

sterile line allows the establishment of a stable two-line

hybrid system, which promises to have a significant impact

on breeding (Zhang et al. 2013).

Rapid progress has also been made in plant epigenetic

research in China. Outstanding achievements have come

mainly in studies of histone modification, DNA methyla-

tion and microRNAs. Specifically, protein arginine meth-

yltransferase, SKB1/PRMT5 and its family members such

as PRMT10, were found to mediate histone modification

H4R3 and pre-mRNA splicing to control flowering and salt

stress responses, as well as stomatal closure in response to

Ca2? in Arabidopsis (Deng et al. 2010; Fu et al. 2013;

Wang et al. 2007). In addition, the histone methyltrans-

ferase SDG724 targets H3K36me2/3 at MADS50 and

RFT1 to promote rice flowering (Sun et al. 2012). Histone

demethylases that act on H3K27, such as REF6 in Arabi-

dopsis, and on H3K4 in rice were reported to be involved in

the development (Cui et al. 2013; Lu et al. 2011). Epige-

nome replication was found to be closely linked with DNA

replication during S phase (Liu and Gong 2011), and it was

revealed that the diRNAs may function as guide molecules

directing chromatin modifications or the recruitment of

protein complexes to DNA double-strand break sites to

facilitate repair (Wei et al. 2012), representing an example

of microRNAs mediating plant responses to the
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environment. Heat stress-induced alternative splicing was

found to provide a novel mechanism for regulation of

microRNA processing in Arabidopsis (Yan et al. 2012).

These important works exemplify the great progress in the

plant epigenetic research brought about by young Chinese

groups.

There has also been a burst of high-quality Chinese

papers on Arabidopsis developmental responses to envi-

ronmental factors such as light, salt, and drought. Most of

them have come from young scientists trained in overseas

labs. For example, COP complexes were found to mediate

photo- or skoto-morphogenesis. Genome-wide analysis

identified transcription regulation networks involving far-

red mediated hypocotyl growth (Jing et al. 2013; Ouyang

et al. 2011; Tang et al. 2012). Identification of several

components involved in plastid retrograde signal genera-

tion, transmission, and control of nuclear gene expression

has provided significant insight into the regulatory network

of plastid retrograde signaling (Chi et al. 2013; Sun et al.

2011). In terms of stress network signaling, a SOS complex

and Na?/H? antiport, as well as DNA methylation and

DNA replication, were found to be involved in regulation

of salt and drought responses (Gong and Zhu 2011; Ye

et al. 2013; Zhou et al. 2012). It is also worth mentioning

the findings that kinase CIPK23-mediated complexes and a

WRKY transcriptional network (WRKY6, WRKY4,

PHO1) function in nutrient stress (Chen et al. 2009; Xu

et al. 2006). Phosphoinositide signaling pathway regulates

multiple processes of plant growth and development, and

cell responses to environmental stimuli in plants (Chen

et al. 2008; Xue et al. 2009). For example, phosphatidyl-

inositol pathway-controlled Ins(1,4,5)P(3)/Ca2? levels are

crucial for maintaining pollen dormancy in Arabidopsis

(Wang et al. 2012a, b). Crosstalk between the phosphati-

dylinositol signaling pathway and auxin response is con-

trolled by polar auxin transport (Mei et al. 2011).

In terms of photosynthesis research, China has given rise

to a wave of molecular genetics, structural and computa-

tional biology studies. Representative of this is the solving

of the crystal structure of a spinach major light-harvesting

complex at 2.72 A resolution, revealing the first X-ray

structure of LHC-II in icosahedral proteoliposome assem-

bly at atomic detail as well as structural insights into

energy regulation of LHC-II CP29 (Liu et al. 2004; Pan

et al. 2011). In addition, LTD (light-harvesting chloro-

phyll-binding protein translocation defect) was reported to

be essential for the import of light-harvesting chlorophyll-

binding proteins and subsequent routing of these proteins to

the chloroplast signal recognition particle-dependent

pathway (Ouyang et al. 2011). Identification of several

components in the plastid retrograde generation, trans-

mission, and control of nuclear genes expression has pro-

vided significant insight into the regulatory network of

plastid retrograde signaling in Arabidopsis (Chi et al.

2013).

Within plant development biology, important advances

include the recognition mechanism during pollination and

the genetic network underlying organogenesis (Zhang et al.

2009). Their results have provided insight into S-RNase-

based self-incompatibility in flowering plants via SLF-

mediated degradation (Chen and Qiu 2012; Zhang et al.

2009), the involvement of small peptides in gametophyte

and pollination recognition (Liu et al. 2013; Yang et al.

2010), as well as floral organogenesis. A model of

S-RNase-based self-incompatibility involving SLF-medi-

ated degradation, based on the studies on snapdragon, was

proposed to explain the biochemical mechanism for spe-

cific rejection of self-pollen tubes by the pistil (Xu et al.

2013). Pollination and cell cytoskeleton research are

examples reflecting the development of cell biological

research to include not only classical functional research

into the cytoskeleton but also examination of novel func-

tions of transcription factors in cellular processes involving

hormone biosynthesis and signaling, such as of GAs and

BRs (Li et al. 2011a; Wang et al. 2012b). In cucumber

unisexual flower development, it is interesting to demon-

strate at molecular level that ethylene selectively promotes

female flower formation by inhibiting stamen development

(Sun et al. 2010).

Although genetic and molecular networks on vernali-

zation have been identified in Arabidopsis, cereals as well

as biennial-to-perennial plants are of diverse patterns to

control vernalization-required flowering. Chinese groups

have shown a significant progress. An example is molec-

ular mechanism studies on vernalization for flowering in

winter wheat, which is unique, totally different from that in

Arabidopsis, not only in the kinds of genes but also in

network of the genes. Wheat lectin gene VER2 could

accelerate vernalization-mediated flowering (Yong et al.

2003). Lectin VER2 protein recognizing O-GlcNAc sig-

naling on the key protein complex is involved in wheat

vernalization. The findings open the way to studies of

O-GlcNAc protein modification in response to environ-

mental signals in plant development, which pattern may be

shared in organisms (Lee and Shin 2009; Xing et al. 2009).

Another example is that the floral transition of Cardamine

flexuosa, a herbaceous biennial-to-perennial plant, requires

vernalization. The levels of two age-regulated microRNAs,

miR156 and miR172, regulate the timing of sensitivity in

response to vernalization. Age and vernalization pathways

coordinately regulate flowering through modulating the

expression of CfSOC1, a flowering-promoting MADS-box

gene. The related annual Arabidopsis thaliana, which has

both vernalization and age pathways, does not possess an

age-dependent vernalization response. Thus, the recruit-

ment of age cue in response to environmental signals
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contributes to the evolution of life cycle in plants (Zhou

et al. 2013a).

Plant hormone researches from Chinese groups

highlight the advantages

Hormone researches in China have been promoted by

national research programs like the major special program

on hormone function and mechanism from the NSFC and

some 973 projects. These programs have attracted scien-

tists from different fields (such as computation science,

chemistry and structural biology, as well as agronomy) to

solve frontier issues in hormone biology. Various hormone

receptors such as COI1 for jasmonic acids (Jas), D14

complex for strigolactone (SL), and PYR/PYL/RCAR and

ABAR for abscisic acid have been identified (Shang et al.

2010; Shen et al. 2006; Yan et al. 2009; Zhao et al. 2013).

In addition, the newly identified hormone SL was found to

function in differentiation of axillary buds in plants (Lin

et al. 2009). Recently, two Nature papers from Chinese

groups revealed that D14-SCFD3-dependent degradation of

D53, as a repressor of SL signaling, regulates rice differ-

entiation of axillary buds for tillering (Jiang et al. 2013;

Zhou et al. 2013a, b). At least three aspects of China’s

hormone research should be highlighted: the development

of an analysis system for trace identification of hormones,

the study of metabolism and signaling in plant develop-

ment, and structure biological approaches revealing

molecular mechanisms that underlie hormone functions.

Quantitative chemical identification of trace amounts of

complex hormones has been a bottleneck hindering hor-

mone research in past years. Now, Chinese chemists have

joined the hormone research field to set up a mass spectrum

(MS) system for analysis of complex hormones such as

gibberellic acids (GAs) and SLs, and to create novel

identification methods. For example, Feng’s group (Wuhan

University) has established a MS-based method for quan-

titative identification of multiple GAs (up to 11 derivatives

of GAs) in one sample (Li et al. 2012). In addition, a novel

amperometric immunosensor for the phytohormone ABA

was created based on chemical reductive growth in situ of

gold nanoparticles on glassy carbon electrodes (Wang et al.

2009). Chinese labs have also produced great advances in

hormone metabolism and modification, signal transduction,

and hormone crosstalk, producing more than 300 publica-

tions including original papers and invited reviews in key

international journals.

Structural biologists in China have collaborated with

plant biologists to discover those key protein complexes in

hormone signaling pathways. For instance, the structure of

the ABA receptor, the PYR/PYL/RCAR complex, was

resolved to clarify the mechanism of coordination between

ABA and the complex (Hao et al. 2011). Structural analysis

also provided insight into brassinolide perception, reveal-

ing that BAK1 is a co-receptor that recognizes the BRI1-

bound brassinolide (She et al. 2011; Sun et al. 2013). In

addition, the crystal structure of the two hormones signal-

transducing a/b hydrolases, karrikin-signaling Kai2 and SL

receptor D14 was resolved by the Xu and Li groups (Zhao

et al. 2013).

From tissue culture to transgenic crops

Research progress in plant tissue culture has been based on

achievements of hormone studies from the 1970s in China.

Until the 1990s, China was one of the leading countries in

plant tissue culture and its applications. The tissue culture

system has been approached to molecular mechanism

studies on development, such as apical meristem differ-

entiation using Arabidopsis plantlets. Using the tissue

culture system, for example, it has been identified that the

establishment of auxin gradients and PIN1-mediated polar

auxin transport is essential for WUS induction and somatic

embryogenesis in Arabidopsis (Su et al. 2009). As well,

DNA methylation and histone modifications regulate de

novo shoot regeneration by modulating WUS expression

and auxin signaling (Li et al. 2011b). In recent decades, on

the other hand, plant tissue culture techniques have been

extensively used for a range of important crops and eco-

nomic plants (Xu 2007). An example is micropropagation

for Eucalypyus in Guanxi, plantlets from micropropagation

tissue culture of 100 elite individual trees in the past

30 years, and annual plantlets production reaches 200

million in culture jars and 160 million provided for plant-

ing in field (Wang et al. 2007). The 2-year seed potato

system ensures reduction of virus infection and hence the

improvement of seed tuber quality. Virus-tested minituber

of potato was applied in about 20 % potato production field

in China (Liu et al. 2006). The micropropagation technique

has been also used for banana, strawberry, various species

and varieties of orchids in horticulture, Dendrobium offi-

cinale (Chinese medicinal orchid, Wu Ping, personal

communication) and Dioscorea opposite (Li 2004), etc.

Anther tissue culture has been successfully used to obtain

dihaploid plants for breeding work of maize, rice, wheat

and rapeseed, etc. Somatic hybrids by protoplast fusion

have been used to obtain new breeding materials in wheat

(Xia Guangmin’s Lab), rapeseed, potato and Citrus (Xu

et al. 2012b).

Among genetic-modified crops, transgenic cotton has

been planted in China for the resistance to insects as well as

improvement of fiber quality. Bt insect-resistant transgenic

cotton from Chinese breeders, approved in 1997 for com-

mercial use to control cotton bollworm, has been widely
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used in production. In China, Bt cotton was steadily

adopted by the bulk of growers (i.e., presently 95 %

adoption in northern China, and 85.65 % for whole coun-

try) (Lu et al. 2010). In addition, transgenic maize har-

boring the phytase gene (BVLA430101) and transgenic

rice with insect resistance (Huahui No. 1; Bt Xianyou 63)

have obtained safety certification for production according

to state regulations, although these have not been com-

mercially planted in China. Risk assessment analyses of the

transgenic crops suggest that natural refuges derived from

the mixed-planting system of cotton, corn, soybean, and

peanut on small-scale, single family-owned farms have a

key function in delaying evolution of cotton bollworm

resistance, and no trend toward Bt cotton resistance has

been apparent despite intensive planting of Bt cotton in

recent years (Lu et al. 2010).

Insect resistance in cotton also has been achieved by

silencing a cotton bollworm P450 monooxygenase gene

using plant-mediated RNAi, thereby impairing larval tol-

erance of gossypol (Mao et al. 2007). Another example of

the improvement of cotton involves spatiotemporal

manipulation of auxin biosynthesis in cotton ovule epi-

dermal cells to enhance fiber yield and quality (Zhang et al.

2011). The lint percentage, an important component of

fiber yield, is consistently higher in the transgenic plants

than in non-transgenic controls, which leads to a more than

15 % increase in yield. This shows a potential for

improving cotton production (Chen et al. 2010).

The Wx (waxy) locus controls amylose synthesis in rice

and many other species. Wx gene expression can be reg-

ulated by antisence approach or RNAi technique in trans-

genic rice and cassava, which have been used to regulate

starch composition. Rice endosperm has been used as

bioreactor to produce HSA (human serum albumin) by

transgenic rice with high expression of recombinant HAS

(OsrHSA) (Yang Daichang’s lab, Wuhan University). In

medicinal plant, Artemisia annua, the content of biological

active component, artemisinin, is less 1 % (dry matter), but

it reached 2.8 % in some strains of transgenic plants with

SQSi, which has been proved for field test (Tang Kexuan’s

lab, Shanghai Jiaotong University).

Perspective

Since the new century started, the community of plant

scientists has steadily enlarged in China. Correspondingly,

the output of Chinese plant science research is impressive.

Mainland Chinese plant researchers have published a sig-

nificantly increasing share of the research articles in top

journals, but breakthroughs driven by original innovations

that are capable of leading new research fields and great

strides in research methods are still lacking. With

continuous support from the Chinese government in terms

of increased funding allocations and improved infrastruc-

ture, we would like to see that Chinese plant scientists may

contribute more than ever to the plant science in the world.

Using the model plant Arabidopsis, Chinese plant sci-

entists have produced high-quality, internationally

acknowledged work. However, to feed the 1.3 billon people

in China and supply more food to the world despite the

shrinking area of arable land, always is one of the top

concerns of the Chinese government and politicians, and the

responsibility of plant scientists in the world. Plant scien-

tists need to pay more attention for staple crops such as rice,

wheat, corn, soybean, rapeseed and cotton. Also, we should

study those crops, like potato, sweet potato and cassava,

which generally are important food resources for develop-

ing regions. When we consider to continue to increase the

crop yield, we also should consider to breed more crop

varieties which are environmental friendly, that means less

chemical fertilizers and pesticides used. With improvement

of living standard in China, Chinese scientists are to pay

more attention to important vegetables and fruits for

improvement of nutrient composition. For identification of

active component of Chinese medicinal plants, we seriously

lack the knowledge about secondary metabolism for those

plants. Thus, it is important to study plant development and

hormone function, plant metabolism including photosyn-

thesis, pest resistance and stress tolerance at molecular

level, and clone more functionally important genes from

germplasm collection. Although many Chinese plant sci-

entists have done impressive work in the above research

areas using different crops, they should integrate their

research resources, they need more interdisciplinary coop-

eration to solve those important plant biology problems and

provide more molecular breeding approaches and to resolve

major agricultural challenges. We are sure that better plant

science for better life of human being.
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