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SUMMARY

Many organisms, including plants, use the circadian
clock to measure the duration of day and night. Daily
rhythms in the plant circadian system are generated
by multiple interlocked transcriptional/translational
loops and also by spatial regulations such as nuclear
translocation. GIGANTEA (GI), one of the key clock
components in Arabidopsis, makes distinctive
nuclear bodies like other nuclear-localized circadian
regulators. However, little is known about the
dynamics or roles of GI subnuclear localization.
Here, we characterize GI subnuclear compartmental-
ization and identify unexpected dynamic changes
under diurnal conditions. We further identify EARLY
FLOWERING 4 (ELF4) as a regulator of GI nuclear
distribution through a physical interaction. ELF4
sequesters GI from the nucleoplasm, where GI binds
the promoter ofCONSTANS (CO), to discrete nuclear
bodies. We suggest that the subnuclear compart-
mentalization of GI by ELF4 contributes to the regu-
lation of photoperiodic flowering.

RESULTS AND DISCUSSION

GI Makes Dynamic Subnuclear Organelles
Many of the Arabidopsis circadian clock components are local-

ized both in the nucleus and the cytosol. As one of the important

regulators in theArabidopsis circadian system, GIGANTEA (GI) is

present in both compartments and associates with a range of

different partners (Huq et al., 2000; Kim et al., 2007). GI protein

interacts with the cytosolic F box protein ZEITLUPE (ZTL), which

acts to regulate endogenous rhythms through phase-specific

proteolysis (Kim et al., 2007). FKF1, CDF1, and GI form a nuclear

protein complex at the promoter ofCONSTANS (CO), a flowering

time integrator, to regulate CO expression (Sawa et al., 2007).

Additionally, TEM1/TEM2 and SVP associate in the nucleus

with GI to modulate FT expression (Sawa and Kay, 2011). GI
also interacts with a nuclear ELF3/COP1 complex that destabi-

lizes GI protein (Yu et al., 2008).

Interestingly, the GI/ELF3/COP1 complex exhibits a specific

subnuclear localization in onion epidermal cells (Yu et al.,

2008). To test whether GI localizes to nuclear bodies in

Arabidopsis cells, we constitutively expressed GI-GFP tran-

siently in Arabidopsis protoplasts and in transgenic plants. In

both systems, GI distribution in the nucleus showed two typical

patterns: a dispersed type, and a punctate type (Figure 1A). The

characteristics of nuclear bodies can also be defined by their

numbers, size, and dynamic movements (Lamond and Sleeman,

2003). In our experiments, the number of GI nuclear bodies

ranged widely, from a few to tens of bodies both in transient

expression and transgenic plants. Additionally, the size of GI

nuclear bodies varied from 0.5 ± 0.025 mm in transient assays

to 0.29 ± 0.0016 mm in transgenic plants (Table S1).

Compartmentalization of proteins in the nucleus is a well-

known means to regulate processes such as transcription,

DNA replication, splicing, and degradation (Lamond and Slee-

man, 2003; Shaw and Brown, 2004). There are well-established

markers for subnuclear organelles inArabidopsis, including DAPI

for chromatin, H2B for chromatin and nucleoli, SCL28 for spli-

ceosomes, and U2B for Cajal bodies (Lorkovi�c et al., 2004). To

test whether GI nuclear bodies colocalize with any of these

markers, we transiently expressed GI-GFP in the presence of

DAPI and also coexpressed GI-GFP with H2B-RFP, U2B-YFP,

or SCL28-RFP. DAPI, H2B, and SCL28 display distinct and

several to tens of nuclear bodies, whereas U2B is present as

a single nuclear body (Figures 1B–1E). When we quantified the

fluorescence intensities from GI-GFP and each marker, none

of these markers colocalized with GI-GFP (right plots in Figures

1B–1E). These results suggest that GI nuclear body localization

is distinct from these subnuclear compartments, and they may

have little functional relationship with the processes indicated

by these markers.

Nuclear bodies are also known to change dynamically

(Lamond and Sleeman, 2003; Misteli, 2001). Thus, we tested

the nuclear dynamics of GI over a diurnal time course by tran-

siently expressing GI and following the changing distribution of

the dispersed and punctate bodies in single-living cells. After
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Figure 1. GI Forms Dynamic Subnuclear Structures

(A)NucleardistributionsofGI ina transient expressionsystemusingArabidopsismesophyll cell protoplastsand in transgenicplants. Twoprominentdistribution types

(dispersed and punctate) of GI-GFP were imaged. GFP was used as a control vector in the transient expression system, and DAPI was used as a nuclear marker.

(B–E) Subnuclear colocalization of GI with other subnuclear marker proteins: DAPI for chromatin (B), U2B for Cajal bodies (C), H2B for chromatin and nucleoli (D),

and SCL28 for spliceosomes (E). Arabidopsis protoplasts were transfected withGI-GFP and stained with DAPI for 1 min before imaging. Arabidopsis protoplasts

were transfected with a GI-GFP and H2B-RFP, U2B-YFP, or SCL28-RFP and kept in dim white light for 8 hr before examination. Intensity plots obtained across

the nucleus (white arrows) are shown in each image set.

(F) Association and dissociation of GI nuclear bodies. Fluorescence intensities from GI-GFP in the nucleus were tracked over 2 hr on a microscope stage. Yellow

arrowheads in the dispersed type of GI localization indicate newly emerged nuclear bodies.

(G) Variation in the proportion of dispersed and punctate types of GI subnuclear localization under LDs (16L/8D). Protoplasts isolated from plants grown under

LDs at ZT 0were transfected with GI-GFP and kept under LDs.White and black boxes represent day and night, respectively. The proportions of cells that express

GI-GFP with each of the two nuclear distribution patterns were counted every 3 hr. Data were normalized to total cells counted. Open circle and black inverted

triangle represent proportions of the dispersed and the punctate type, respectively. Error bars represent the SEM from four independent replicates.

Scale bars represent 5 mm. See also Figure S1.
transfection, we observed dispersed GI-GFP in the nucleus for

1 hr, with a few small nuclear bodies starting to form after 2 hr

of observation (Figure 1F, upper panel). For punctate-type

bodies, numerous GI nuclear bodies were present at the outset

and then started to dissociate after 45 min of observation, with

most of them absent after 2 hr (Figure 1F, lower panel). Thus,
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the dispersed and punctate types of GI nuclear distribution ap-

peared to be interchangeable, indicating the dynamic nature of

their assembly and disassembly.

We next measured the dynamics of the changing proportion of

the dispersed and punctate types of GI nuclear expression under

diurnal conditions to test the relationship of GI subnuclear



Figure 2. ELF4 Interacts with GI within Nuclear Bodies

(A) CoIP of GI and ELF4 in the nucleus. CsV::GI-GFP and CsV::ELF4-HA were

transiently expressed in N. benthamiana, and GI-GFP and ELF4-HA were

localized to both the cytosol and the nucleus. CoIP was performed with GFP

antibody using the nuclear fraction. HSP90 and H3 were used as a marker for

the cytosol and nucleus, respectively.

(B) BiFC analysis of the GI/ELF4 interaction. Green represents YFP from the

GI/ELF4 interaction. Chloroplast autofluorescence is red.

(C) Subnuclear colocalization of GI and ELF4. GI-GFP and ELF4-RFP were

transiently expressed in Arabidopsis protoplasts. Green indicates GI-GFP, red

indicates ELF4-RFP, and blue indicates chloroplast autofluorescence.

Scale bars represent 10 mm. See also Figure S2.
distribution to its function. We counted the number of cells that

expressed the two types every 3 hr under long days (LDs) and

normalized these with total number of cells expressing GI-GFP

at each observation point (Figure 1G). The relative proportion

of the dispersed and punctate types of GI-GFP varied

throughout the day. The dispersed type was high during the

photoperiod and comprised the lowest portion at the end of

night. In contrast, punctate GI was low during the day and was

at the highest level by the end of night. We further measured

the change of the nuclear distribution of GI under short days (Fig-
ure S1). The proportions of the dispersed and punctate types

were also anticorrelated, but the peaks and troughs were not

clear as seen in LDs. Interestingly, the point at which each

nuclear distribution type changed relative to the other was phase

advanced in short days compared to LDs and correlated well in

both conditions with same number of hours after the light-to-

dark transition (Figure S1). These data imply that the subnuclear

distribution of GI might be coupled to the light-dark cycles and

may provide a further regulatory mechanism to understand the

photoperiodism in Arabidopsis.

GI Directly Interacts with ELF4 at the Nuclear Bodies
Nuclear bodies are large protein complexes that contain

proteins with similar functions (Lamond and Sleeman, 2003).

We next asked which additional proteins that have functions

related to GI might complex with it. Among known circadian

clock components, we screened for potential GI interaction

proteins using yeast two-hybrid assays and isolated EARLY

FLOWERING 4 (ELF4) as a GI interaction partner (Figure S2A).

Both GI and ELF4 have a similar circadian phase (David et al.,

2006; Fowler et al., 1999; Khanna et al., 2003; Kikis et al., 2005;

Kim et al., 2007; Kolmos et al., 2009; McWatters et al., 2007;

Mizoguchi et al., 2005; Nusinow et al., 2011; Park et al.,

1999; Sawa et al., 2007) and genetically interact to affect similar

circadian outputs such as seedling growth, flowering time, and

expression of clock genes in a phase-specific manner over

a diurnal cycle (Kim et al., 2012). GI localizes both in the

nucleus and cytoplasm (Kim et al., 2007), and we performed

immunoblot analyses on cell fractions using ELF4p::ELF4-HA

seedlings to establish its presence in both the nucleus and

cytosol (Figure S2B). We next tested for potential interaction

by transiently expressing GI and ELF4 in tobacco. Both

proteins localized in the nucleus and the cytosol, which is

consistent with previous reports (Kim et al., 2007) (Figure S2C).

Additionally, in vivo coimmunoprecipitation (coIP) assays

demonstrated both nuclear and cytosolic interactions (Figures

2A and S2C). We next used bifluorescence complementation

(BiFC) assays to determine where subnuclear interactions

occur and observed fluorescence at distinct nuclear bodies

(Figure 2B). Additionally, GI-GFP and ELF4-RFP are able to

form nuclear bodies independently and localize at the same

bodies in which their interaction was observed (Figure 2C).

Taken together, these data indicate that GI and ELF4 interact

both in the nucleus and cytosol and within the same nuclear

bodies.

ELF4 Regulates GI Nuclear Compartmentalization
Because GI and ELF4 interact within nuclear bodies, we tested

whether they can regulate subnuclear localization of each

other. GI-GFP and ELF4-RFP were transiently expressed in

elf4 and gi-2 protoplasts, respectively, and their nuclear distri-

bution patterns under LDs were observed. When we expressed

GI-GFP in WT and elf4 protoplasts, the proportion of punctate

bodies was lower in the elf4 background than in WT proto-

plasts, whereas the portion of the dispersed type was higher

than in WT protoplasts at all time points tested (Figure 3A).

This strongly increased proportion of the dispersed type and

decreased proportion of the punctate type of GI nuclear
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Figure 3. ELF4 Recruits GI to Nuclear Bodies

(A) Altered distribution of GI-GFP in elf4 protoplasts. GI-GFP was expressed transiently in WT (Col) and elf4 protoplasts, and the proportion of each distribution

type of GI was observed (left). Typical image of subnuclear distributions of GI-GFP in WT and elf4 protoplasts at ZT17 (right). Green indicates GI-GFP; red shows

autofluorescence from chloroplasts.

(B) Subnuclear distribution of ELF4-RFP in WT and gi-2 protoplasts. ELF4-RFPwas transiently expressed in WT and gi-2 protoplasts, and the proportion of each

distribution type of ELF4 was observed (left). Typical image of subnuclear distributions of ELF4-RFP in WT and gi-2 protoplasts at ZT17 (right). Red indicates

ELF4-RFP; blue shows chloroplast autofluorescence. Data are mean ± SE from four biological replicates. Each dispersed or punctate form of GI-GFP and ELF4-

RFP was counted and the relative proportion of each reported.

Scale bars represent 10 mm. See also Figure S3.
localization in elf4, especially at night, led to a dampening in the

cyclic changes in the proportion of GI subnuclear distribution

type (Figure 3A). We also measured the nuclear distribution of

ELF4-RFP in WT and gi-2 protoplasts. ELF4-RFP also dis-

played two prominent nuclear distribution types: dispersed,

and punctate (Figure 3B). Approximately 80% of cells express-

ing ELF4-RFP formed nuclear bodies, and around 20% of these

cells showed an even distribution of ELF4-RFP in WT nuclei

with little change over a LD cycle. When we expressed ELF4-

RFP in gi-2 protoplasts, there was no significant change in

the nuclear distribution of ELF4-RFP compared to those in

WT protoplasts (Figure 3B).

We next expressed GI-GFP with RFP or ELF4-RFP in elf4

protoplasts to test whether ELF4 could induce the localization

of GI to nuclear bodies. The proportion of the dispersed type

of GI-GFP when coexpressed with RFP was similar to the distri-

bution pattern seen when GI-GFP was expressed alone in the

elf4 mutant (Figure S3). In contrast, GI-GFP coexpression with

ELF4-RFP decreased the proportion of the dispersed type by

about 20%, whereas the proportion of the GI-GFP punctate

type increased (Figure S3). From these results, we conclude
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that the subnuclear localization of GI is strongly controlled by

ELF4. These results suggest that ELF4 can modulate GI function

by regulating the subnuclear localization of GI.

ELF4 Modulates the CO Promoter Binding Affinity of GI
We then asked what the functional significance of ELF4 control

of GI localization might be. ELF4 is known to act upstream of

GI in photoperiodic flowering time regulation (Kim et al., 2012),

and transient translocalization of GI to the nucleus induces flow-

ering (Gunl et al., 2009). GI protein is destabilized by a complex of

ELF3 and COP1 (Yu et al., 2008), and nuclear GI can bind the

promoter of CO and FT directly and regulate their expression

(Sawa and Kay, 2011; Sawa et al., 2007). These previous reports

led us to consider two possibilities: (1) ELF4 might regulate GI

protein stability at the nuclear bodies within an ELF3/COP1

complex, and (2) ELF4 might regulate GI action as a transcrip-

tional modulator of photoperiodic flowering integrators. To test

these possibilities, we generated transgenic plants expressing

GI-GFP under a constitutive promoter (CsV::GI-GFP) in an

elf4-209 background to avoid possible transcriptional regulation

of GI by ELF4 because ELF4 is known to suppress GI



Figure 4. ELF4 Regulates Chromatin Accessibility of GI

(A and B) Nuclear GI-GFPs in CsV::GI-GFP and elf4CsV::GI-GFP under 12/

12 hr light-dark cycles. GI proteins were detected by anti-GFP. HSP90 and H3

were used as cytosolic and nuclear markers, respectively. GI protein abun-

dance was normalized to H3. Data are mean ± SE from four biological

replicates.

(C)CO promoter binding affinity of GI in the elf4mutant relative toWT. Diagram

for the CO amplicon in ChIP assay is indicated. Amplicons I, II, and III marked

with hatched boxes correspond to amplicons 1, 3, and 4, respectively, as

previously reported by Sawa et al. (2007). Ten-day-old seedlings were har-

vested 1 hr after lights on. The fold enrichment is calculated relative to ACT2.

(D) CO mRNA expression in CsV::GI-GFP and elf4CsV::GI-GFP. CO mRNA

expression determined by quantitative RT-PCR with the same tissues used for

ChIP. CO mRNA normalized relative to ACT2. Data are mean ± SE from six

biological replicates.

See also Figure S4.
transcription (Kolmos et al., 2009). We first assayed the effects of

the elf4 mutation on GI protein stability in the nucleus to avoid

possible complication of a cytosolic effect of ELF4 on overall

GI abundance. Nuclear GI showed weak cycling under light-

dark cycles, and GI nuclear protein levels were not significantly

affected by the elf4mutation (Figures 4A and 4B). This result indi-

cates that ELF4 has little effect on GI protein stability in the

nucleus. Thus, the recruitment of GI to ELF4 nuclear bodies is

unlikely to regulate GI protein abundance, and this complex

seems to function differently from the GI/ELF3/COP1 complex,

which affects GI protein levels (Yu et al., 2008). Cytosolic GI

also showed very weak cycling under constitutive expression

(Figure S4A), and cytosolic GI was decreased by the elf4 muta-

tion about 30% throughout the day, indicating that ELF4 stabi-

lizes GI in the cytosol through an unknown mechanism

(Figure S4A). These results additionally imply that ELF4 acts on

GI differently in the nucleus and the cytoplasm.

We next tested whether ELF4 might affect the activity of GI as

a transcriptional modulator of CO. We performed chromatin

immunoprecipitation (ChIP) assays using CsV::GI-GFP and

elf4 CsV::GI-GFP seedlings. Tissues were sampled at ZT1

(ZT: hours after lights on), corresponding to the time of the high-

est proportion of dispersed nuclear GI, both in WT and the elf4
mutant (Figures 1G and 3A), and binding to amplicon III at the

CO promoter was assayed (Figure 4C, diagram) (Sawa et al.,

2007). When we compared CO promoter binding affinity of GI

in these two backgrounds, GI-GFP was enriched 3-fold in the

elf4 mutant, relative to WT at amplicon III, whereas there were

no significant differences at the control amplicons (Figure 4C).

Consistent with this finding, CO expression level in elf4 was

significantly higher than WT (Figure 4D), and flowering time of

elf4 CsV::GI-GFP plants was earlier than that of CsV::GI-GFP

both in LDs and short days (Figure S4B). These results support

the notion that ELF4 negatively regulates CO expression by

sequestering GI from the CO promoter to specific ELF4-GI

nuclear bodies.

Conclusions
Spatial regulation in cellular signaling is an important factor in

understanding complex regulatory mechanisms (Herrero and

Davis, 2012; Meier and Somers, 2011). Many circadian clock

regulators can be localized at nuclear foci such as PRR5/

TOC1 (Wang et al., 2010), ELF3/ELF4 (Herrero et al., 2012),

ELF3/COP1/GI (Yu et al., 2008), and CKB4 (Portolés and

Más, 2007). Diverse spatial regulations could, in principle, allow

a single protein species to contribute to many signaling path-

ways. Specifically, subnuclear compartmentalization is charac-

terized by a distinct set of resident proteins with dynamic

changes in their size, shape, and number without the separa-

tion afforded by membranes (Lamond and Sleeman, 2003;

Shaw and Brown, 2004). GI has been suggested to have differ-

ential roles in the nucleus and the cytosol (Gunl et al., 2009;

Kim et al., 2007; Sawa and Kay, 2011; Sawa et al., 2007),

and our results contribute to this notion by showing that GI

forms a specific type of nuclear body into which it is seques-

tered by physical interaction with ELF4 from the CO promoter.

GI nuclear body formation is induced by ELF4 under LDs (Fig-

ure 3), and this implies that the absolute levels of ELF4 protein

can affect the proportion of GI nuclear body formation. Oscilla-

tion of ELF4 protein under diurnal conditions shows a broad

peak at night that corresponds closely to that of GI (Figure S2B).

This high expression of ELF4 at night may recruit GI to the

nuclear bodies from the CO promoter, which is consistent

with the cycling of GI subnuclear distributions (Figure 1F).

However, CO transcript has a second peak at night (Suárez-

López et al., 2001). This second CO peak does not correlate

with GI/ELF4 nuclear body formation, and this discrepancy

suggests that there are additional pathways to generate the

CO waveform at night. Interestingly, ELF3/COP1/GI nuclear

bodies have been suggested to form during darkness (Yu

et al., 2008). Hence, there might be a competition between

ELF4 and ELF3/COP1 to form a complex with GI. The ELF3/

COP1 complex destabilizes GI proteins, which might act to

shape the decreasing slope of the GI protein level during the

night. In contrast, the GI/ELF4 nuclear body sequesters GI

from the CO promoter, retaining GI within the nucleus for

possible release in the morning, eliminating the need for de

novo synthesis of GI. Taken together, the spatial regulation of

GI with ELF4 in the nucleus can provide an additional mecha-

nism that contributes to the currently known genetic and

molecular interactions that control photoperiodic flowering.
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EXPERIMENTAL PROCEDURES

Plant Materials and Transgenic Plants

The gi-2 was reported previously (Park et al., 1999), and elf4-209 (Kolmos

et al., 2009) was backcrossed three times. CsV::GI-GFP was constructed

using LR recombination (GATEWAY; Invitrogen, Carlsbad, CA, USA).

Preparation of Protoplasts

For transient expression in Arabidopsis, protoplasts were prepared from

fourth, fifth, and sixth leaves of 1-month-grown Col-0 under LDs (16L/8D) or

short days (8L/16D) at 22�C, as described previously (Kim et al., 2008). Trans-

fected protoplasts were maintained and observed under the stated conditions

of each experiment.

Vector Construction

The CsV::GI-GFP, GI cDNA clone was generated by PCR using the primers

50-GGA TCC GAT GGC TAG TTC ATC-30 and 50-GAT GGA TCC TTG GGA

CAA GGA TAT AGT ACA GCC GAG-30, which resulted in removal of the termi-

nation codon. GI cDNA digested with EcoRI and BamHI was fused with pCsV-

eGFP-N-999 (Kim et al., 2008). For transient expression of CsV::GI-GFP, the

gene cassette was moved to the pBlueSKII+ vector using NotI.

For SCL28::mRFP, SCL28 cDNA was obtained by PCR using primers

50-AGA GAA TTC ATG AGG GGA AGG AGC TAC-30 and 50-GAT GGA TCC

TGC TTC TTC TAG GGC TGG-30. pCsV-mRFP-N-999 was generated by

substitution of eGFP from pCsV-eGFP-N-999 to monomeric RFP from

pDsRed-Monomer-N1 (Clonetech Laboratories, Mountain View, CA, USA).

U2B::YFPwas kindly donated by Drs. Yuda Fang and David L. Spector from

Cold Spring Harbor Laboratory (Cold Spring Harbor, NY, USA). The

CsVMV::ELF4-HA vector was prepared by recombination of an entry clone

that contained the ELF4 cDNA and pCsVMV-HA-1300. The ELF4-RFP vector

was also generated by recombination with pCsVMV-HcRed1-999.

To confirm the cellular localization of ELF4 in planta, we generated

ELF4p::ELF4-HA plants. ELF4p::ELF4 was amplified with primers 50-CTT
CTG CAG CTC ATG ATT TCC TGC GGTAAT-30 and 50-CTT AGG CCT AGC

TCT AGT TCC GGC AGC A-30 from Arabidopsis genomic DNA. This genomic

gene cassette was moved to an entry vector and then transferred to an HA-

tagged binary vector that has no promoter. The ELF4p::ELF4-HA clone was

transformed into the elf4-209 mutant.

Microscopic Analysis

Fluorescence images were obtained using an inverted confocal microscope

(LSM5 LIVE; Carl Zeiss, Germany). Subcellular and subnuclear localizations

of fluorescence fusion protein were observed with 3100 and 363 oil-immer-

sion apochromat objectives, respectively (Carl Zeiss). Images from each

experiment were pseudocolored and plotted with LSM5 LIVE software.

Immunoblot Analysis and CoIP

Immunoblot analyses for GI, HSP90, and H3 protein detection were done as

reported (Kim et al., 2007). Polyclonal HSP90 antibodies (rabbit) were made

by W.Y.K. and were diluted 1:5,000 for detection. For cytosolic interaction

between GI and ELF4, CsV::GI-GFP and CsV::ELF4-HA were transiently ex-

pressed in N. benthamiana, and immunoprecipitations were performed as re-

ported (Wang et al., 2010).

Flowering Time Measurement/mRNA Expression

These experiments were performed as described (Kim et al., 2008).

ChIP

Chromatin binding affinity of GI onCO promoter was performed as reported by

Sawa et al. (2007).
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