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† Background and Aims DREB proteins are involved mainly in plant responses to abiotic stresses such as cold,
drought or high salinity as well as ABA signalling. However, the function of most rice DREB genes and the
underlying molecular mechanisms controlling these responses remains elusive. In this study, ARAG1, a rice
DREB gene, was functionally analysed.
† Methods Antisense and over-expression constructs of ARAG1 were introduced into rice by an Agrobacterium-
mediated method. RT-PCR and western blot were used to detect ARAG1 accumulation in transgenics. PEG and
ABA were used to test their response to abiotic stresses.
† Key Results ARAG1 was expressed in inflorescences, roots, immature embryos and germinating seeds, but not in
coleoptiles, leaves or mature embryos. Drought stress and ABA treatment increased transcript levels of the gene
rapidly. ARAG1 knockdown line was hypersensitive to ABA application during seed germination and seedling
growth. However, the line over-expressing ARAG1 behaved similarly to wild type in these circumstances.
Knockdown of ARAG1 weakened tolerance of the transgenic seedlings to drought stress, while over-expression
of it increased the tolerance slightly. In addition, activity of a-amylases was enhanced in germinating seeds of the
knockdown and over-expression lines.
† Conclusions These results indicate that ARAG1 was involved in the ABA signalling and stress responsive
pathways.
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INTRODUCTION

AP2/ethylene-responsive element binding proteins (EREBP),
composing a superfamily of plant-specific transcription
factors, are characterized by the presence of a highly conserved
approx. 70-amino-acid region, termed the AP2 DNA-binding
domain (Weigel, 1995; Okamuro et al., 1997). Dehydration-
responsive element binding (DREB) proteins, a subgroup of
the AP2/EREBP transcription factors, play important roles in
plant response and adaptation to abiotic stresses (Sakuma
et al., 2002; Gutterson and Reuber, 2004). In arabidopsis,
DREB1 and its homologues respond to cold whereas DREB2
and its homologues respond to drought or salt stress, both in
an abscisic acid (ABA)-independent manner. Over-expression
of DREB1 and DREB2 results in different phenotypes in trans-
genic plants (Liu et al., 1998). Besides the DREBs of arabidopsis
(Stockinger et al.,1997; Gilmour et al., 1998; Liu et al., 1998),
characterized members of this subgroup included OsDREB1A,
-1B, -1C, -2A and -2B of rice, Pti4, Pti5 and Pti6 of tomato
and others from maize, tobacco and cotton (Gu et al., 2002;
Niu et al., 2002; Dubouzet et al., 2003).

The DRE/CRT cis-element is identified in the promoter region
of stress-responsive genes such as rd29A and kin1
(Yamaguchi-Shinozaki and Shinozaki, 1994, 2005). DREB

proteins interact with DRE/CRT by their AP2 DNA-binding
domain, thus mediating downstream gene expression in the
stress-responsive pathway (Yamaguchi-Shinozaki and
Shinozaki, 1994, 2005). In contrast, the ABA-responsive
element (ABRE) mainly mediates downstream gene expression
in the ABA-signalling pathway. Interestingly, increasing evi-
dence shows that DRE/CRT can act as a coupling element of
the ABRE cis-element to regulate downstream gene expression
(Narusaka et al., 2003). Thus, there exists a comprehensive con-
nection between stress-responsive and ABA-signalling pathways
(Shinozaki and Yamaguchi-Shinozaki, 2000; Shinozaki et al.,
2003). As exemplified by ZmABI4, a DREB protein which
shows ABA-induced expression, it binds to CE1 and acts as a
coupling element of the ABRE in maize (Niu et al., 2002).
Consistently, over-expression of DREB1D/CBF4, which is an
ABA-responsive gene of arabidopsis, activates expression of
drought and cold-related downstream genes that contain the
DRE/CRT cis-element (Knight et al., 2004). Another line of evi-
dence comes from microarray analysis, which shows that, among
17 downstream genes of DREB2A, 12 carry both the DRE/CRT
and ABRE cis-elements (Maruyama et al., 2004; Sakuma
et al., 2006). These results demonstrate that some DREBs are
involved in both ABA signalling and stress-responsive pathways.

Recently, Wang et al. (2008) reported that besides respond-
ing to exogenous ABA treatment, OsDREB1F was induced by†These authors contributed equally to this work.
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drought or salt stresses in rice, suggesting that OsDREB1F was
involved in both the stress-responsive and ABA-signalling
pathways. Similarly, over-expression of DBF2, a DREB gene
of maize, represses not only the basal promoter activity of
its downstream gene, but also the effect of ABA (Kizis and
Pagès, 2002). These researches reveal that the plant hormone
ABA is intimately linked with DREB protein function and
some aspects of their relationship have been addressed. That
ABA regulates seed germination and seedling growth has
been reported (Finkelstein et al., 2002); however, whether
DREB affects theses activities, and through which pathway it
regulates them remain to be clarified. In this study, a cDNA
sequence of a DREB-like gene, ABA responsive AP2-like
gene in rice (ARAG1) was isolated, and its function investi-
gated through transgenic strategies to understand the role it
played in ABA-regulated plant activities.

MATERIALS AND METHODS

Plant materials and nuclear acid extraction

Cultivar Zhonghua 10 (Oryza sativa L. ssp. japonica) wild-
type (WT)and transgenic rice were grown conventionally in
a greenhouse. Plant material was harvested as follows: inflor-
escences at male meiosis and developing embryo stages;
leaves from 2-week-old seedlings; and roots and coleoptiles
from seeds germinated for 3 d on paper soaked in sterile
water. Germinating embryos were striped from rice seeds
after imbibition for 24 h. Total RNA in the endosperm was
extracted according to Li’s method (Li, 2006). To detect the
gene’s response to ABA inducement, seedlings 1 week after
germination were treated with solutions of different ABA con-
centrations before RNA was extracted.

Genomic DNA was extracted using cetyltrimethyl
ammonium bromide (Murray and Thompson, 1980). Total
RNA was extracted using TRIzol reagent (Gibco-BRL)
according to the manufacturer’s protocol, followed by diges-
tion with RNase-free DNase I (TaKaRa) to remove residual
genomic DNA.

Isolation of the cDNA sequence of ARAG1

According to the predicted sequence of ARAG1 (AJ307662;
Genbank), a gene-specific primer pair, P1 (50-GAGCTCTC
TTTCCACGTCGCGAGAG-30) and P2 (50-TCTAGACGGGT
TGTACATGCAGGCT-30), were designed. About 5 mg of
root total RNA was reversely transcribed into first-strand
cDNA by use of the ThermoScript kit (Invitrogen). PCR was
performed with the cDNA as template. Purified PCR products
were cloned into the pGEM-T vector (Promega) and
sequenced.

Semiquantitative RT-PCR analysis of ARAG1 mRNA expression

A total of 5 mg of RNA isolated from different organs or
from different treatments were reverse-transcribed into first-
strand cDNA. RT-PCR was performed for 30 cycles in a
50-mL mixture that included 1 mL of the first-strand cDNA,
10 pmol each of the gene-specific primers P3 (50-ATCCAT
GGACGACTCGTCGTTC-30) and P4 (50-CGACTAGTGTAG

TACTCCCACAGAAGTG-30), which were designed to
amplify the coding region of ARAG1, 200 mM dNTPs, 1 �
PCR buffer and 2.5 U DNA polymerase (5 U mL– 1; Takara).
The PCR products were separated in 1 % agarose gels and
photographed. Tubulin A (Tub A, accession X91806) mRNA
was amplified in parallel as a constitutive control as described
by Tao et al. (2007).

Preparation of antisense and over-expression constructs of
ARAG1

To make an antisense expression construct of ARAG1 (35S–
ARAG1 AS), a 963-bp fragment containing the full coding
region of ARAG1 was amplified with primer P1 (SacI site
added) and P2 (XbaI site added). After digestion, the fragment
was inserted into XbaI–SacI doubly digested pBI121 vector in
reverse orientation. The resulting construct was digested with
HindIII–EcoRI and the smaller fragment harbouring the
CaMV 35s promoter, ARAG1 antisense fragment and Nos ter-
minator was sub-cloned into the HindIII–EcoRI polylinker
site of the pCAMBIA1301 vector, with beta-glucuronidase
(GUS) as reporter gene.

To obtain the ARAG1 over-expression construct (35S–
ARAG1 OE), the full coding region of ARAG1 was amplified
with primers P3 and P4 (NcoI and SpeI sites added, respect-
ively) and fused into the open reading frame of the GFP
(green fluorescence protein) gene in the pCAMBIA1302
vector. The two constructs were introduced separately into
rice embryonic calli by Agrobacterium tumefaciens-meditated
methods (Hiei et al., 1994).

Subcellular localization of ARAG1 protein

ARAG1 over-expression construct was introduced into
onion epidermis cells by Agrobacterium tumefaciens as
described by Hu et al. (2008). GFP fluorescence was observed
with a microscopic in bright field or through a FITC filter
(Zeiss). The transformants were incubated on MS medium at
25 8C in the light for 2.5 d before observation.

Identification of transgenic plants

Hygromycin-resistant transgenic plants were first identified
by PCR amplification with primers for the hygromycin phos-
photransferase gene: P5 (50-TGCTGCTCCATACAAGCCAA
CC-30) and P6 (50-AGACCTGCCTGAAACCGAACT-30).
They were further identified by GUS staining in leaves of
AS (antisense) lines according to the methods described by
Jefferson et al. (1987) as well as by Southern blot in OE (over-
expressing) and AS lines. The primer pair P3 and P7
(50-ATTCTTTTGGTCATGCGTGGAA-30) were used to
amplify transcripts of endogenous ARAG1, and P3 and P4
were used to amplify total ARAG1 transcripts. To ARAG1
over-expression plants, GFP gene-specific primer pairs P8
(50-GGTCTAGAATGACTAAAGGAGAAG-30) and P9 (50-A
TGAGCTCGGGCAGATTGTGTGGACA-30) were used to
amplify the expression of ARAG1 from the over-expression
construct, and P3 and P4 were used to examine the total
level of ARAG1.
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Germination, seedling growth and ABA treatment

T1 seeds were germinated on half-strength MS medium
contain 50 mg L– 1 hygromycin for screening of positive
progeny. Offspring from confirmed T1 lines were used for
further analysis.

To analyse germination, 30 seeds of the T2 generation from
each different transgenic line or WT control were soaked in tap
water at 25 8C for 24 h and then allowed to germinate on
sterile-water-saturated filter paper at 25 8C with 0 mM, 2 mM,
4 mM, 6 mM or 8 mM ABA. Seeds were regarded as having germi-
nated when the primary root was longer than 2 mm. Germination
rates were scored on the 4th, 7th and 10th days in triplicate.

For the seedling growth treatment, transgenic seeds of the T2

generation and WT were allowed to germinate on water-
saturated filter paper for 4 d, with a 16 h light/8 h dark
regime at 25 8C. After this, they were grown on filter paper
supplemented with 0 mM, 2 mM, 4 mM or 8 mM ABA for an
additional 10 d. The length of the primary roots and height
of the shoots were measured and number of adventitious
roots counted on the 10th day. Each datum was the mean
value of at least 30 seeds in triplicate.

ARAG1 antibody preparation and western blot analysis

A non-conserved sequence of ARAG1 (encoding amino
acids 136 to 225, amplified with primers 50-ACTGAATTC
GGCCTCCTCCGCCAATGC-30 and 50-CGACTCGAGTTGT
AGTACTCCCACAGAAG-30) was fused into the glutathione
S-transferase (GST) gene in the vector pGEX-4T-3
(Amersham) for protein expression. ARAG1 polyclonal anti-
body was prepared as described by Hanly et al. (1995) and
Worrall (1996).

Total proteins from different organs of transgenic or WT
rice were extracted according to the method of Salekdeh
et al. (2002). Forty micrograms of the extracted proteins
were loaded in each lane. Western blot was performed as
described previously (Zhang et al., 2006).

PEG 6000 treatment of the seedlings

To evaluate drought tolerance of ARAG1 transgenic rice,
WT and ARAG1 transgenic seedlings were grown hydroponi-
cally (Kumar et al., 2003) for 5 weeks in a greenhouse, fol-
lowed by 2 weeks in which 15 % PEG 6000 was added to
the nutrient solution to mimic drought conditions.
Afterwards, shoots and roots of the seedlings were harvested
for water concentration determination. Their biomasses (dry
weight) were measured before and after desiccation in a
forced air oven at 70 8C for 3 d.

Analysis of a-amylase activity in WT and ARAG1 transgenic
seeds

Activity of a-amylases was analysed as described by Ikeda
et al. (2001).The embryo halves of WT, OE2 and AS9
seeds were cut away, and the remaining parts were sterilized
in 15 % NaClO for 30 min. After rinsing the seed halves
with sterilized distilled water five times, they were placed on
an agar plate (0.2 % soluble starch,10 mM NaAC3H2O, 2 mM

CaCl2, 2 % agar and 1 mM GA3) and incubated at 24 8C for
3 d. Then the plates were exposed to volatilization of iodine
gas for 2 min. Activity of a-amylases was indicated by the
diameter of the hydrolysis circle on the plates. Each plate con-
tained 30 seeds of the different genotypes in triplicate.

RESULTS

ARAG1 encodes a DREB-like protein

The amplified cDNA sequence of ARAG1 was confirmed by
AK108830 on the KOME database (http://cdna01.dna.affrc.
go.jp/cDNA/). It includes an open reading frame of 678 bp
capable of encoding a 225-amino-acid protein. The N- and
C-terminal regions of ARAG1 contain a serine/threonine-rich
motif of 21 amino acids (amino acids 13–31) and a highly
acidic region of 74 amino acids (134–208; Fig. 1A), respect-
ively. These motifs have been proposed as transcriptional acti-
vation domains in other characterized AP2/EREBP members
(Jofuku et al., 1994; Elliott et al., 1996). Besides the AP2
DNA binding domain, the protein has a putative nuclear local-
ization signal (NLS) KKKRPRK (Fig. 1A). These features
together with the result that ARAG1–GFP fusion targeted to
the nucleus (Fig. 1B) suggested that ARAG1 was a potential
transcription factor.

A comparison of amino acid sequences revealed that
ARAG1 shared higher sequence similarity with DREB pro-
teins such as maize DBF2 (Kizis and Pages, 2002), arabidopsis
TINY (Wilson et al., 1996) and DREB1A–1D/CBF1–4 (Liu
et al., 1998; Haake et al., 2002) than other AP2/EREBP sub-
group members. Moreover, the similarities were intensively
restricted to their AP2/EREBP DNA-binding domain regions
in which about 73–92 % amino acids were identical. In
addition, ARAG1 contained the 14th valine, 19th glutamic
and the quartet amino acids SEIR between the 14th and 19th
amino acids (Fig. 1A). These amino acids, which are com-
monly present in other known DREB proteins, are identified
as essential for the recognition and binding of the protein to
the target DNA fragment (Sakuma et al., 2002).

Finally, phylogenetic analysis based on multi-sequence
alignments of the domains revealed that ARAG1 formed a
clade with DBF2 of maize, and it was more close to DREB1
than to DREB2 (Fig. 1C), implying that ARAG1 was a
novel DREB-like protein of rice that might be involved in
drought response.

Expression of ARAG1 was up-regulated by ABA or drought
treatment rapidly and prominently

Northern blot failed to detect any signal in different organs
of rice even if 30 mg of total RNA was loaded on the agarose
gel, suggesting that ARAG1 was expressed at a very low level.
Semi-quantitative RT-PCR showed that ARAG1 expressed in
roots, inflorescences, endosperms of germinating seeds and
developing and germinating embryos but not in coleoptiles,
leaves and mature embryos (Fig. 2A).

The response of ARAG1 to abiotic stresses and ABA indu-
cement was examined because PLACE (www.dna.affrc.go.jp/
PLACE/signalup.html), a database for plant cis-acting
element identification (Higo et al., 1999), predicts that three
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ABRE elements (ACGTG) are presented in its promoter region
(–210 to –206, þ1604 to þ1600 and –1605 to –1601 within
2 kb upstream of the ATG). In arabidopsis, these elements act
as cis-acting elements of the ABA-mediated dehydration-
responsive expression of rd29B (Yamaguchi-Shinozaki,
1994). As shown in Fig. 2B, compared with the control,
expression of ARAG1 was up-regulated by drought and
100 mM ABA treatment after 30 min. However, it seemed
insensitive to low temperature (Fig. 2B).

Detailed analysis revealed that the expression of ARAG1
culminated at 1 h of 100 mM ABA treatment, then decreased
gradually (Fig. 2B, right). At 30 min of the treatment
(Fig. 2C, left), the expression levels of ARAG1 were strength-
ened with the increase of ABA concentrations from 2 mM to
100 mM. When treatment time extended to 60 min (Fig. 2C,
right), the transcripts increased continually by 10 mM ABA
treatment. Two micromolar ABA had a similar but less
obvious effect. In contrast, 50 mM and 100 mM ABA treatment

A

MDDSSFGSEPTTSSSGGEAPASPPSTASSSSDGAGGKKKRPRKDGHHPTYRGVRMRSW

GKWVSEIREPRKKSRIWLGTFATAEMAARAHDVAALAIKGRAAHLNFPDLAHELPRPATAAP
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FI G. 1. ARAG1 encodes a DREB-like protein. (A) Amino acid sequence of ARAG1. The AP2/EREBP domain is underlined. The potential nuclear localization
signal, the serine/threonine-rich region and VSEIRE motif is marked with bold, italic (in box) and shading, respectively. (B) ARAG1 is a nucleus-localized
protein: 1, 2 are transformants with pCAMBIA1302 vector observed in FITC filter and bright field, respectively; 3, 4 are transformants with ARAG1 over-
expression construct observed in the FITC filter and bright field, respectively. Scale bar ¼ 30 mm for 1–4. (C) Phylogenetic tree constructed by multiple sequence
alignments of the AP2/EREBP domain of ARAG1 and those of other DREB proteins using Clustal W (Higgins et al., 1992) and MEGA3.1 (Kumar et al., 2004).
The sequences used are: arabidopsis DREB1A/CBF3, DREB1B/CBF1, DREB1C/CBF2, DREB1D/CBF4, DREB2A, DREB2B, ABI4, HARDY and TINY
(Accession nos FJ169301, FJ169278, FJ169318, NM_124578, NM_001036760, NP_187713, NP_181551 NP_181186 and NP_197953, respectively), maize
DBF1, DBF2 and ZmABI4 (Accession nos AF493800, AF493799 and AY125490), rice ARAG1, OsDREB1A, OsDREB1B and OsDREB2 (Accession nos

BAG98540, AF300970, AF300972, AF300971).
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resulted in decreases of ARAG1 expression, suggesting that
self-protective mechanism to against harmful effects of ABA
oversupply may exist in this process.

ARAG1 knockdown rice was hypersensitive to ABA inhibition
during seed germination and seedling growth

The functions of ARAG1 were investigated using knock-
down and over-expression strategies. Three over-expression
lines (OE2, OE5 and OE8) and four antisense lines (AS1,
AS3, AS9 and AS10) of ARAG1 which had been confirmed
by Southern blot or GUS staining (data not shown) were
used to analyse expression. ARAG1 transcripts decreased in
AS lines and increased in OE lines (Fig. 3A), implying that
the constructs worked effectively. Western blot with antibody
specific to ARAG1 revealed that the protein level was reduced
significantly in AS lines; however, compared with ARAG1 in
WT, its increase in OE lines was very limited (,20 %).

The progenies of positive AS9 and OE2 that did not show
genotypic segregation (identified as in the T0 generation) were
selected for phenotypic assessment. As ARAG1 was expressed
during seed germination (Fig. 2A), ARAG1 transgenic seeds
were examined for their ability to germinate, particularly in
the presence of ABA application. All concentrations of ABA
caused WT seeds to germinate more quickly than the trans-
genics, and their mean germination rate decreased proportion-
ally with increased ABA concentration (Fig. 4A). At 4 d after
imbibition (Fig. 4B), the germination rate of all the seeds
reached 100 % in the absence of ABA application. However,
when treated with ABA, it decreased obviously in WT and
OE lines. No seed germinated in AS lines (Fig. 4B).

WT

1·00 0·24 0·40 0·22 0·63

1·00 1·00 1·10 1·12 1·150·22 0·33 0·23 0·44
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WT OE2 OE5 OE8
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FI G. 3. Expression of ARAG1 in transgenic rice. WT, wild type; AS1, AS9 and AS10, antisense lines 1, 3 and 9, respectively; OE2, OE5 and OE8, over-
expression lines 2, 5 and 8, respectively. Left, transgenic AS line; right, transgenic OE line. (A) Semi-quantitative RT-PCR analyses of ARAG1 expression in
rice transgenic lines. Tubulin A (Tub. A) transcripts were used as constitutive controls. Quantification of mRNA levels (ratios of normalized data for transgenic
lines vs WT) is listed below the figure. The endogenous ARAG1 transcripts (E-ARAG1) were amplified by primers of P3 and P7; the total transcripts of ARAG1
(T-ARAG1) were amplified by primers of P3 and P4; GFP expression level (GFP) represents the over-expression level of ARAG1. (B) Western blot of ARAG1

expression in wild-type and transgenic rice lines.
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1·00 1·04 1·49 2·13 2·83 1·00 1·12 2·75 2·05 1·52

1·00 1·55 2·17 1·89 1·64

CK 0·5 1 2 3D A T

CK 2 10 50 100 CK 2 10 50 100

ARAG1

Tub. A

ARAG1

Tub. A

ARAG1

Tub. A

F L R I M G G E

FI G. 2. mRNA accumulation pattern of ARAG1 in different tissues or at
different development stages examined by semi-quantitative RT-PCR in tripli-
cate. The statistical data presented are the mean+ s.d. Tubulin A (Tub. A) tran-
scripts were used as constitutive controls. The expression intensity was
analysed by 2DE Image Master software (2002.01). (A) Expression patterns
of ARAG1 transcript in coleoptiles (C), inflorescences with male meiocytes
at meiotic stage (F), leaves (L), roots (R), immature embryos (I), germinating
embryos (G), endosperms of germinating seeds (E) and mature embryos (M).
(B) Accumulation of ARAG1 transcripts in roots subjected to 0.5 h of drought
(D), 100 mM ABA (A), and 4 8C low temperature (T), or with 100 mM ABA
treatment for 0.5, 1, 2, 3 h, respectively. (C) Accumulation of ARAG1 tran-
scripts in roots after treatment with 2 mM (2), 10 mM (10), 50 mM (50),

100 mM (100) ABA for 30 min (left) or for 60 min (right).
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At 7 d after imbibition, germination rate of WT seeds reached
85 % even if 8 mM ABA was applied. More than half OE seeds
germinated under all concentrations of ABA treatment. In

addition, all AS seeds, except for those being treated with
8 mM ABA, began to germinate (Fig. 4C). At 10 d after imbibi-
tion, most of the WT and OE seeds had germinated under the
different ABA concentrations and the AS seeds had began to
germinate even when treated with 8 mM ABA (Fig. 4D).

Similar to the observation of seed germination, the seedling
growth of WT and transgenic rice showed a similar tendency
of inhibition in response to ABA treatments (Fig. 5A).
Although the length of the primary root and the height of
shoots of these seedlings were not obviously different in
normal growth conditions, there was an significant discrepancy
when different concentrations of ABA treatments were used –
the higher the ABA concentration the more obvious the inhi-
bition (Fig. 5B and C). It is worth noticing that the inhibition
was more serious in the AS seedlings compared with their WT
and OE counterparts. When treated with 4 or 8 mM ABA, very
few adventitious roots were observed in any of the seedlings
(Fig. 5D). Taken together, these facts indicate that knockdown
of ARAG1 conferred hypersensitivity to ABA inhibition during
seed germination and seedling growth of transgenics. In con-
trast, over-expression of the gene showed only a slight effect
on these activities.

ARAG1 plays a role in rice drought tolerance

Five-week-old hydroponically grown seedlings of WT and
ARAG1 transgenics were prepared to compare their drought
tolerance. Seedlings were treated in nutrient solution sup-
plemented with 15 % PEG 6000 to mimic drought stress,
with another set of seedlings grown in normal nutrient solution
as a control. As shown in Fig. 6A, after 2 weeks of treatment,
the AS line had a slightly wilted appearance and the WT line
displayed similar but less-severe symptoms. In contrast, the
OE seedlings looked normal. To evaluate the effects of the
PEG treatment, the water concentration in the shoots of these
plants was measured. Under drought stress, as shown in
Fig. 6B, compared with the control that was grown in
normal conditions, the WT line lost about 4.7 % of water,
the OE line lost 4.4 % and the AS line lost 7.0 %. Consistent
with the observation made with the seedlings, differences in
water concentration between OE and WT seedlings seemed
negligible, but they were evident between AS and WT lines.
This suggests that ARAG1 was involved in the process associ-
ated with tolerance in the seedlings.

a-Amylase activity was markedly enhanced in ARAG1 transgenic
rice

As a-amylase activity is an important factor linked with seed
germination, it was measured in WT and ARAG1 transgenic
seeds. The results showed that, during germination, a-amylase
activity increased remarkably in both the AS and the OE
seeds compared with WT seeds (Fig. 7). It was contrary to
the observation that, in the absence of ABA treatment,
ARAG1 transgenic seed had similar germination features to
WT seed. This demonstrates that germination and a-amylase
activity are separate processes although they are closely linked
in seeds. The presence of ARAG1 transcripts in embryos and
endosperms of germinating seeds (Fig. 2) suggests that the
gene is probably regulated differently in these tissues.
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FI G. 4. Germination of wild-type and ARAG1 transgenic rice seeds treated
with different concentrations of ABA treatments for varying times. A1, A2,
A3, A4 are photographs of transgenic and wild-type seeds germinated for 5d
with 2, 4, 6 or 8 mM ABA, respectively. In each panel, the upper, middle and
lower rows are WT, OE2 and AS9 seeds, respectively. (B–D) show the germina-
tion percentage of wild-type and ARAG1 transgenic rice seeds under 0, 2, 4, 6 or
8 mM ABA for 4, 7 or 10 d, respectively. Error bars indicate the s.d. (n ¼ 30).
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DISCUSSION

ABA plays an important role in many plant processes such as
formation and dormancy of seeds, inhibition of germination
and growth arrest in the early seedling stage under unfavour-
able environmental conditions (Koornneef and Karssen,
1994; Bewley, 1997; Lopez-Molina et al., 2001;
González-Guzmán et al., 2002). Some DREB transcription
factors, capable of being activated by ABA, mediate their
downstream gene expression to help a plant survive a stressful
environment (Kizis and Pagès, 2002; Karaba et al., 2007;
Wang et al., 2008). However, during seed germination and
seedling growth, little is known about the role of DREB pro-
teins and how they were regulated by ABA. In this study, a
DREB-related gene, ARAG1 was cloned and functionally ana-
lysed, and the findings may help to understand DREB protein
function more comprehensively.
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FI G. 5. Response of ARAG1 transgenic and wild-type seedlings to ABA treat-
ment. (A) Wild-type and ARAG1 transgenic rice seedlings after 3 d germina-
tion were treated with 0 mM ABA (A1), 2 mM ABA (A2), 4 mM ABA (A3)
or 8 mM ABA (A4) for 10 d. In each panel, from left to right, the seedlings
are wild type, OE line 2 or AS line 9, respectively. (B–D) Morphological par-
ameters of wild-type and ARAG1 transgenic rice seedlings after treatment for
10 d. (B) Length of primary root (mm); (C) height of shoot (mm); (D) number

of adventitious roots. Error bars indicate s.d. (n ¼ 30).
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ARAG1 encodes a DREB-like protein containing the charac-
terized AP2 DNA binding domain (Fig. 1). This domain, which
was identified in other DREB proteins such as arabidopsis
DREB1 and DREB2, rice OsDREBs and maize DBF2, can
bind to the DRE/CRT cis-element of the stress-responsive
genes, and thus activate the expression of their down-stream
genes (Stockinger et al., 1997; Gilmour et al., 1998; Liu et al.,
1998; Kizis and Pagès, 2002; Dubouzet et al., 2003). In addition,
its relatively hydrophilic and acidic features, combined with the
presence of nuclear-targeting motif, suggest that this protein has
a potential nucleus-localizing function. The serine- and
glutamine-rich motifs, which have been proposed to act as tran-
scriptional activation domains in the maize DBF2 and some
other transcriptional factors (Elliott et al., 1996; Kizis and
Pagès, 2002) are also presented in ARAG1. These imply that
ARAG1 may act as a transcriptional regulator in rice.

Expression of ARAG1 was quickly induced by drought
stress, which is similar to maize DBF2 (Kizis and Pagés,
2002). The transgenic seedlings that over-express ARAG1
showed slightly enhanced tolerance, whereas the ARAG1
knockdown lines showed reduced tolerance to drought stress
(Fig. 6). Perhaps like HARDY, an arabidopsis DREB gene
which significantly increased drought tolerance of transgenics
when expressed in rice (Karaba et al., 2007), ARAG1 is poten-
tially useful for improving crop productivity.

a-Amylases are activated to hydrolyse carbohydrates that
are stored in endosperm into soluble sugars to meet the
needs of seed germination (Paiva and Kriz, 1994). Therefore,
when seed is germinated in stressful conditions, a-amylase
activity should be enhanced to provide additional energy for
survival (Plaxton, 2004, 2006). In accordance with this postu-
lation, the present results showed that activity of a-amylases
was increased in ARAG1 transgenic seeds (Fig. 7), implying
that when seedlings are grown in a stressful environment,
ARAG1 can help them to survive by increasing the
a-amylase activity. That the transgenic seedlings had smaller

biomass compared with WT plants (data not shown) provided
further support for this inference.

Previous findings have shown that transgenics with modified
expression of AP2/EREBPs are either hypersensitive or insensi-
tive to ABA treatment (Söderman et al., 2000; Pandey et al.,
2005). In the present study, the AS lines were hypersensitive to
ABA treatment since their seed germination and seedling
growth was obviously repressed compared with that of WT
control (Figs 4 and 5). However, little difference in these aspects
is found between the ARAG1 OE line and the WT control
(Figs 4 and 5). Given the fact that reducing ARAG1 protein con-
ferred hypersensitivity on the AS seedlings to ABA application
as compared with the WT, it is probable that ARAG1 acted as a
negative regulator in the ABA-dependent pathway.

In drought stress, the OE line showed slightly increased tol-
erance and the AS line displayed reduced tolerance, implying
that ARAG1 took part in this process besides its role in the
ABA-dependent pathway. Interestingly, tolerance of drought
stress in transgenics seems to be positively related to their
ARAG1 level.

Recently, Vinces et al. (2009) reported that promoters con-
taining a sequence of repeats confer higher rates of tran-
scriptional divergence. Analogously, duplicating a copper
regulatory element confers efficient copper induction on a heter-
ologous promoter (Thiele and Hamer, 1986). This research indi-
cates that repeating cis-elements are important for regulating the
promoted gene’s expression. Therefore, the three ABRE
elements identified in the promoter region of ARAG1 may help
explain the gene’s diversified regulation property, which is
important for plants to adapt flexibly to the environment.
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