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Abstract
During sexual reproduction of flowering plants, the pollen tube grows fast and over a long

distance within the pistil to deliver two sperms for double fertilization. Growing plant cells

need to communicate constantly with external stimuli as well as monitor changes in surface

tension of the cell wall and plasma membrane to coordinate these signals and internal

growth machinery; however, the underlying mechanisms remain largely unknown. Here we

show that the rice member of plant-specific receptor-like kinase CrRLK1Ls subfamily, Rup-
tured Pollen tube (RUPO), is specifically expressed in rice pollen. RUPO localizes to the

apical plasma membrane and vesicle of pollen tubes and is required for male gamete trans-

mission. K+ levels were greater in pollen of homozygous CRISPR-knockout lines than wild-

type plants, and pollen tubes burst shortly after germination. We reveal the interaction of

RUPO with high-affinity potassium transporters. Phosphorylation of RUPO established and

dephosphorylation abolished the interaction. These results have revealed the receptor-like

kinase as a regulator of high-affinity potassium transporters via phosphorylation-dependent

interaction, and demonstrated a novel receptor-like kinase signaling pathway that mediates

K+ homeostasis required for pollen tube growth and integrity.

Author Summary

The pollen tube is a representative tip-growing cell, and it grows in female reproductive
tissues with amazing speed to transport two sperm cells into the embryo sac for double fer-
tilization. This feature and function require pollen tubes to communicate with female tis-
sues and maintain their integrity before sperm discharge. Progresses in the cell wall model
and osmotic pressure dynamics have contributed to our understanding of pollen tube
growth and integrity maintenance, but underlying molecular mechanisms are still remain
largely unknown. This work identifies a novel CrRLK1L receptor kinase RUPO from rice,
which is in a different phylogenetic branch compared with the known ANX1 and ANX2.
RUPO controls high-affinity potassium transporters via phosphorylation-dependent
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interaction. The RUPO-potassium transporter module regulates K+ homeostasis for pollen
tube growth and integrity. Thus, this study reports a novel CrRLK1L signaling pathway
that mediates K+ homeostasis required for pollen tube growth and integrity. These find-
ings provide the first evidence for involvement of receptor-like kinase CrRLK1L in K+

homeostasis via regulating potassium transporters.

Introduction
Amajor functional innovation of spermatophytes is the evolution of pollen grains consisting of
the large vegetative cell (VC) and the immobile male gametes (sperm cells). Pollen grains are tol-
erant of desiccation and can spread over long distances by wind and/or animal pollinators, thus
being an important driving force for species diffusion. During pollination and fertilization of
flowering plants, pollen grains undergo adhesion and hydration on the female stigma, then the
VC bulges through the germination aperture to generate a tip-growing pollen tube (PT)[1]. The
PT enters stigmatic cells, grows fast and over a long distance within the pistil via turgor-driving
growth at the tip, and finally reaches the receptive synergid cell, where the tube arrests its growth
and ruptures at its tip to release two sperm cells for double fertilization [2–4]. Thus, successful
fertilization requires maintenance of PT integrity and timely growth arrest and rupture.

Growing plant cells need communicate constantly with external stimuli as well as monitor
changes in surface tension of the cell wall and plasma membrane to coordinate these signals
and internal growth machinery [5–7]. The fast tip-growing features of PTs suggest that they
have active mechanisms underlying external signal sensing, coordination and response, but
these mechanisms are largely unknown. In Arabidopsis, FER, ANX1/2, THE1 and HERK1/2,
members of the plant-specific receptor-like kinase (RLK) of Catharanthus roseus RLK1-like
(CrRLK1L) subfamily are implicated in cell expansion [8]. FER is expressed in synergids and
various vegetative tissues except pollen. FER is required for timely growth arrest of PTs in the
receptive synergid and for root hair elongation [9–12]. Conversely, ANX1 and ANX2 are
expressed preferentially in pollen and function redundantly [13, 14]. PTs in anx1anx2 double
mutants showed precocious rupture. Overexpression of ANXs caused PT growth inhibition
[15]. These CrRLK1L members appear to share downstream signaling components, reactive
oxygen species (ROS)-producing NADPH oxidases [15]. Recently, MRI, a receptor-like cyto-
plasmic kinase, was identified as a positive CrRLK1L signaling component and functioned
downstream of ANXs and NADPH oxidases in PTs and downstream of FER in root hairs [11].
Therefore, these CrRLK1L members regulate cell integrity possibly via the NADPH oxidase-
ROS system, but their roles in PT burst remain elusive. Disruption of ANXs or NADPH oxi-
dases caused premature burst of PTs, which suggests that ROS inhibits PT overgrowth and pre-
vents tube rupture [15, 16]. However, studies of FER showed that promoting ROS production
induced PT rupture, and scavenging of H2O2 and �OH prevented PT bursting [17]. Thus, fur-
ther insights into CrRLK1L signaling are needed to understand the biological functions of
these receptors as well as the mechanisms underlying the maintenance of PT integrity, timely
growth arrest and rupture.

K+ is an essential mineral for pollen germination and tube growth [18, 19]. Cytosolic K+,
together with sugar, contributes to the turgor pressure of growing PTs [20–22]. Disruption of
SPIK, an inward K+ channel in Arabidopsis, strongly reduced K+ influx, which resulted in
impaired pollen germination and PT growth [23]. PTs lacking K+ transporters CHX21 and
CHX23 grew down in the transmitting tract and failed to turn to the ovule [24]. Excessive
inflow of K+ through K+ channel KZM1 ruptured the PT in maize [25]; blocking the opening
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of an outward K+ channel in the PM of Pyrus pyrifolia also resulted in PT burst [26]. These
results suggest that fine-tuned K+ homeostasis may be important for PT growth and timely
rupture.

In this study, we investigated the function of Ruptured Pollen tube (RUPO), a novel member
of the CrRLK1L subfamily from rice. RUPO is specifically expressed in mature and germinated
pollen. The T-DNA insertional mutant rupo+/- is defective in rupomale gametophyte trans-
mission. Loss-of-function mutants generated with the CRISPR method showed significantly
greater K+ content in mature pollen than wild-type plants and precocious PT rupture shortly
after germination. This protein is localized in the PM and vesicle of PTs and interacts with K+

transporters OsHAK1, OsHAK19 and OsHAK20, which indicates that the CrRLK1L subfamily
regulates K+ transporters to control PT integrity in rice.

Results

RUPO is required for pollen function and expressed specifically in pollen
In previous study of transcriptomic profiles of developing and germinated rice pollen[27], we
revealed a rice CrRLK1L member[28] with specific expression in mature and germinated pol-
len and obtained a heterozygous T-DNA insertional mutant, rupo+/- (details follow) from the
POSTECH database[29,30]. The heterozygous mutant contains a single T-DNA insertion in
the exon region (Fig 1A) and does not substantially differ from the wild type (WT) in vegeta-
tive and reproductive growth (S1 Fig). However, on self-fertilization, the progeny displayed a

Fig 1. RUPO is expressed specifically in rice pollen. (A) The genomic structure of RUPO and positions of
T-DNA insertion site and CRISPR target sites (sg1 and sg2). RUPO is an intronless gene. The black
rectangle represents the exon. (B) RT-PCR and (C) quantitative PCR analysis of RUPO transcripts in
different tissues. 18S ribosomal RNA was used as an internal control. The relative expression is presented as
mean ± s.e.. (D) Western blot analysis of RUPO protein in pollen. 20 μg of total proteins from pollen was
loaded in each lane, resolved on 4~15%SDS-PAGE gel and detected with anti-RUPO polyclonal antibody.
Asterisk indicates RUPO band. Upper panel: western blot; bottom panel: protein loading control stained with
Coomassie blue. UNM, uninucleate microspore; BCP, bicellular pollen; TCP, tricellular pollen; MPG, mature
pollen grain; GPG, germinated pollen grain.

doi:10.1371/journal.pgen.1006085.g001
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distorted segregation ratio for the rupo+/-mutant to the WT of 1:1.07 (no homozygous
mutants), rather than the expected 1:2:1 Mendelian ratio (Table 1), which indicates a gameto-
phytic defect. To investigate whether the gametophytic defect was in the male or female, we
performed reciprocal crosses of rupo+/- with WT plants. When rupo+/- pistils were pollinated
with WT pollen, the progeny produced rupo+/- and WT plants at a ratio of 1:1.12. However,
when WT pistils were pollinated with pollen from rupo+/-, all progeny were WT plants
(Table 1). These results indicate defective male gametophyte transmission.

To confirm that the defective male transmission was caused by dysfunction of the RUPO
gene, we introduced a RUPO::RUPO transgene into rupo+/- plants (S1 Fig). Because rupo+/-
already contains hygromycin resistance conferred by the original T-DNA insertion, G418
(kanamycin) resistance was used in screening transgenic plants (T0 generation). T1 plants car-
rying both the hygromycin and G418 resistance were identified by PCR analysis. In the T1 gen-
eration, 5 homozygous rupo-/- in 23 plants were obtained (Table 1). Therefore, WT RUPO was
able to rescue the defect in the rupomale transmission.

RUPO transcripts were not detected in pistils and vegetative tissues but highly expressed in
florets, tricellular pollen (TCP), mature pollen grains (MPGs) and germinated pollen grains
(GPGs), with the strongest signals in MPGs (Fig 1B and 1C), so RUPO was specifically expressed
in pollen. Consistently, transgenic rice lines harboring RUPO::GUS showed strong GUS signals
in pollen grains but undetectable signals in pistils (S2 Fig). Furthermore, we developed a poly-
clonal antibody against RUPO (S3 and S4 Figs). Immunoblot assay detected RUPO protein in
MPGs, with high enrichment in GPGs, but barely detected in immature pollen (Fig 1D). This
pollen-specific expression of RUPO is consistent with its requirement for male transmission.

rupo PTs rupture in vitro
To investigate how RUPO affects male transmission, we first examined the morphological fea-
tures of MPGs. Pollen grains from both rupo+/- andWT plants contained one loosely stained
vegetative nucleus and two condensed sperm nuclei and were viable (S5 Fig). The pollen coat,
wall, and germination aperture did not differ between rupo+/- and WT plants (S5E–5J Fig).
Therefore, rupo pollen grains develop normally and are viable. Next, we examined in vitro pol-
len germination and tube growth on solid germination medium. In this condition, 72.3%WT
pollen germinated, and 70% germinated WT pollen had integral PTs (Fig 2). In contrast,
approximately 79.2% rupo+/- pollen germinated, comparable to that of WT pollen, but only
26.3% germinated rupo+/- pollen had integral PTs (Fig 2). The rupomutation may not affect
pollen germination but impairs the integrity of newly generated PTs.

To study rupo phenotypes in detail, we used a CRISPR-Cas9 system [31, 32] to generate two
independent homozygous mutant lines, rupo-sg1 and rupo-sg2 (S6 and S7 Figs), that harbor

Table 1. Segregation analysis of heterozygous rupo+/- mutant.

Genotype of parents Genotype of progeny Observed ratio Expected ratio

♀ ♂ WT +/- -/- WT: + / - : -/- WT: + / - : -/-

RUPO / rupo RUPO / rupo 301 322 0 1:1.07:0a 1:2:1

RUPO / rupo RUPO/RUPO 180 202 0 1:1.12:0b 1:1:0

RUPO / RUPO RUPO / rupo 214 0 0 214:0:0 a 1:1:0

Complementation RUPO/rupo +gRUPO × self 11 7 5 11:7:5b 2:3:1

aSignificantly different from the Mendelian segregation ratio (χ2, P<0.01)
bNot significantly different from the Mendelian segregation ratio (x2, P > 0.05).

doi:10.1371/journal.pgen.1006085.t001
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frame-shift mutations (most were one-base-pair insertion or deletion) at respective target sites
sg1 (532–551 bp) and sg2 (603–622 bp) in RUPO (S6 Fig). We obtained 10 independent homo-
zygous bi-allelic plants (rupo-/-), 6 heterozygous mono-allelic plants (rupo-/+) and 5 chimeri-
cal plants (excluded from further analysis). We examined the in vitro germination behavior of
bi-allelic and mono-allelic pollen. Bi-allelic and mono-allelic plants had similar pollen germi-
nation rate, comparable to WT plants. Most WT PTs maintained integrity (S8A Fig), even
after germination for 40 min (PTs of rice usually stop growing after germination for 15~20
min in vitro). In contrast, all of the bi-allelic pollen burst within the first 5 min after germina-
tion (S8C Fig, S1 and S2 Movies). As expected, approximately 29.3% of mono-allelic pollen
had integral PTs (S8B and S8D Fig), which was similar to the T-DNA insertion mutant rupo+/-
(26.3%; Fig 2C), because mono-allelic plants should genotypically mimic the T-DNA insertion
heterozygous rupo+/-. These data demonstrate that the loss-of-function rupo allele led to PT
burst.

rupo PTs rupture in the pistil
We used self-pollinated pistils fromWT, rupo+/-, and bi-allelic and mono-allelic plants to
examine the in vivo tube growth behavior by aniline blue staining. In WT pistils, PTs pene-
trated the stigma and targeted the ovule. In WT plants, 94.4% of ovules (n = 109) were targeted
by at least one PT (Fig 3A and 3M). Surprisingly, in bi-allelic plants, only 4% of ovules
(n = 163) were targeted by PTs (Fig 3D and 3M). On closer examination, 73.3% bi-allelic pistils
(n = 163) were attached with callus spots instead of PTs and pollen grains, and the remaining
22.7% pistils (n = 163) contained PTs that prematurely stopped in papilla cells or transmitting
tracts (Fig 3H), so the PT ruptured in pistils. We also observed the pollen amount on pistils.
After aniline blue staining, a WT pistil contained 47.8 pollen grains, on average (Fig 3E and
3N), but a bi-allelic pistil had only 3.3 pollen grains, on average (Fig 3H and 3N).

To clarify whether aniline blue staining affected number of pollen grains in bi-allelic pistils,
we collected self-pollinated pistils and counted pollen grains attached to the pistils directly or
after aniline blue staining (Fig 3I–3L). On average, 47.8 and 114.6 pollen grains were observed in
treated and untreated pistils, respectively, of WT plants, whereas the respective pollen amount
was decreased in rupo+/- and mono-allelic plants and significantly decreased in bi-allelic plants,

Fig 2. In vitro pollen germination and growth assay. (A) Wild-type pollen. (B) rupo+/- pollen. Red
arrowheads indicate ruptured pollen tubes. (C) Pollen germination rate and percentage of pollen tube
integrity. The results are presented as mean±s.e. (D) Time-lapse images of wild-type pollen germinating on
agarose medium.White arrows indicate the growth of a wild-type pollen tube. (E) Time-lapse images of bi-
allelic pollen germinating on agarose medium. Note that rupo pollen tubes burst and released cell contents in
seconds without forming any visible pollen tubes.Time is indicated in minutes:seconds format. Scale bars,
50 μm. (see also S1 and S2 Movies in the supplementary material).

doi:10.1371/journal.pgen.1006085.g002
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Fig 3. Homozygous bi-allelic mutant pollen tubes burst in pistils. (A to H) Pollen tube growth in pistils of wild-type (A,E),
heterozygous T-DNAmutant rupo+/- (B,F), mono-allelic mutant (C,G) and bi-allelic mutant (D,H). White arrowheads indicate
the putative positions of micropyles. All ovules were targeted by pollen tubes except for ovules from the bi-allelic mutant.
Inserts in (E,F,G,H) are close-ups of representative pollen tubes in wild-type (E), rupo+/- (F), mono-allelic (G) and bi-allelic
(H) stigmas. Red arrows in (H) indicate callus spots. (I,J,K,L) Bright-field images of representative pistils without aniline blue
staining from wild-type (I), rupo+/- (J), mono-allelic (K) and bi-allelic (L) plants. Scale bars, 100 μm. (M) The percentage of
ovules targeted by pollen tubes. n = 109 for wild-type pistils, n = 106 for rupo+/- pistils, n = 95 for mono-allelic pistils and
n = 163 for bi-allelic pistils. (N) Pollen number per pistil before or after aniline blue staining. n = 79 (before staining) or 75
(after staining) for wild-type pistils, n = 74 or 107 for rupo+/- pistils, n = 59 or 89 for mono-allelic pistils, and n = 80 or 145 for
bi-allelic pistils. Results are presented as mean ± s.e..

doi:10.1371/journal.pgen.1006085.g003
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with 3.3 and 66.9 pollen, on average, in treated and untreated pistils, respectively (Fig 3N), which
suggests sufficient pollen adhering to bi-allelic pistils. In addition, Alexander staining showed
that the pollen amount in bi-allelic anthers before or after dehiscence was similar to that of the
WT (S7 Fig). These data indicate that rupo pollen tubes burst in vivo and poorly adhered to pis-
tils after staining. Adherence defect of rupo pollen is probably caused by the failure of tube inva-
sion of papillae cells, for ruptured pollen is easier to wash out (S9 Fig). Furthermore, we
performed reciprocal crossing betweenWT and bi-allelic plants to ensure the PT burst was not
induced by abnormal pistils of bi-allelic plants. When bi-allelic pistils were pollinated withWT
pollen, they produced normal seeds. However, whenWT pistils were pollinated with bi-allelic
pollen, no seeds were produced (S10 Fig). Therefore, rupo PTs burst in vivo.

RUPO is localized to the PT tip
We first bombarded onion epidermal cells with 35S::RUPOΔC-GFP(the kinase domain
replaced by a GFP) and with the control 35S::GFP. Plasmolysis treatment showed that
RUPOΔC-GFP was localized to the plasma membrane (PM) (Fig 4A–4D), whereas the control
GFP was observed in the cell periphery and cytoplasm (Fig 4E and 4F). Next, we transiently
introduced Ubi::RUPO-GFP and Ubi::GFP to lily pollen tubes. RUPO-GFP was observed at the
growing PT tip (Fig 4G and 4H). By contrast, control GFP was detected throughout the PT
(Fig 4I). Moreover, closer examination of the tip and shank region using variable angle TIRF
microscopy showed that RUPO-GFP signals existed not only in the PM, but also in vesicles (S3
and S4 Movies). Finally, we fractionated membrane vesicles fromMPGs by discontinuous
sucrose density gradient. Immunoblot assay showed that RUPO was enriched in the PM, the
endoplasmic reticulum and vesicles with low buoyant density (Fig 4J–4L). In conclusion,
RUPO protein is a PM-localized protein and shows apical localization in PTs.

RUPO interacts with potassium transporters and regulates K+

homeostasis
To understand how RUPO is responsible for PT integrity, we identified potential RUPO-inter-
acting proteins by use of the prey cDNA library prepared with mRNAs from GPGs and the
bait containing the intracellular domain (without juxtamembrane region, JM) (BD-RUPO-C).
We frequently identified (16 of 96 in-frame clones) cDNA insertions corresponding to the C-
terminus of high-affinity K+ transporter OsHAK1, with the longest cDNA insertion encoding
the 110-aa residue C-terminal tail of OsHAK1. OsHAK1 and its two closest homologues,
OsHAK19 and OsHAK20, in rice share 77% and 75% amino acid sequence identity, respec-
tively, and have multiple transmembrane regions (S11 and S12 Figs). Therefore, we tested
RUPO-C interaction with the 110-aa C-terminus of OsHAK1/19/20 (OsHAK1-C,
OsHAK19-C and OsHAK20-C). Yeast two-hybrid assay showed that RUPO-C interacted with
OsHAK1-C but not OsHAK19-C and OsHAK20-C (Fig 5A). Consistently, pull-down assay
showed that GST-RUPO-C specifically interacted with MBP-OsHAK1-C but not
MBP-OsHAK19-C or MBP-OsHAK20-C (Fig 5B). However, when FLAG-RUPO-C was tran-
siently co-expressed with GFP-OsHAK1-C, GFP-OsHAK19-C or GFP-OsHAK20-C in rice
protoplasts, FLAG-RUPO-C interacted with GFP-OsHAK1-C and also GFP-OsHAK19-C and
GFP-OsHAK20-C (Fig 5C). Therefore, RUPO physically associated with all the three K+ trans-
porters, with strong interaction with OsHAK1.

In rice, OsHAK1/19/20 belong to a KT/HAK/KUP family of 27 members which is classified
into 4 clusters (I–IV) [33, 34]. Because OsHAK1/19/20 all come from the same cluster I, we
further cloned another 5 OsHAKs (OsHAK26, Cluster I; OsHAK23, Cluster II; OsHAK17,
Cluster III; OsHAK6, OsHAK25, Cluster IV) that expressed in rice pollen, and test whether
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RUPO-OsHAK interaction is general to all OsHAK members or specific to OsHAK1/19/20
with Yeast two-hybrid. When the C-tail of OsHAKs was truncated to a minimal 77 aa,
OsHAK1/19/20 interacted with RUPO-C (S13A Fig). However, only the 110-aa C-tail of
OsHAK1 specifically interacted with RUPO-C in yeast (S13B Fig), consistent with above
results, but those of other OsHAKs did not interact with RUPO-C (S13A and S13B Fig).
Together, these results suggest interaction of RUPO with OsHAK1/19/20 is specific.

Cluster I members of the KT/HAK/KUP family are involved in high-affinity K+ uptake, and
function at low external K+ concentration and transport K+ into the cytosol against an electro-
chemical gradient [35, 36]. OsHAK1-GFP displayed PM localization in onion epidermal cell
(S14 Fig), which is consistent with the result described by Chen et al. [37]. Similarly,
OsHAK19-GFP was enriched in the PM. While OsHAK20-GFP signal was most prominent in
the cytoplasm. In lily pollen tubes, OsHAK1/19/20-GFP were observed both in the cell

Fig 4. RUPO localizes to the plasmamembrane and cytoplasmic vesicles of the pollen tube. (A-F)
Subcellular localization of the 35S::RUPOΔC-GFP fusion protein in onion epidermal cells. (A) Single confocal
section and (B) bright-field image of the cell bombarded with 35S::RUPOΔC-GFP plasmid. (C,D) The same cell as
in (A,B) was treated with 0.8 Mmannitol to induce plasmolysis. (E) Single confocal section and (F) bright-field
image of the cell bombarded with 35S::GFP. (G,H,I) Subcellular localization of the Ubi::RUPO-GFP fusion protein
in lily pollen tubes. (G,H) RUPO or (I)GFP alone driven by ubiquitin promoter was transiently expressed in lily
pollen tubes. Scale bars, 50 μm in (A) to (G), 5 μm in (H,I). (J-K) RUPO was enriched in membrane fraction.
Homogenate frommature pollen grains was centrifuged at 10,000×g, and resultant supernatant (S10) was further
centrifuged at 100,000×g to separate into supernatant (S100) and membrane fraction (P100). Proteins in each
fraction were resolved by SDS-PAGE and probed with anti-RUPO antibody. 30 μg soluble protein (S10, S100) and
10 μg membrane protein (P100) were loaded. (J) Western blot image, (K) Protein loading control image stained
with Coomassie brilliant blue. (L) Crude membrane vesicles were fractionized on a discontinuous sucrose density
gradient, and proteins in individual fractions were probed with antibodies against RUPO, ERmarker protein SMT1
and PMmarker protein H+-ATPase.

doi:10.1371/journal.pgen.1006085.g004

Receptor-Like Kinase RUPORegulates K+ Homeostasis

PLOS Genetics | DOI:10.1371/journal.pgen.1006085 July 22, 2016 8 / 23



periphery and cytoplasm (S14 Fig). K+ transport activity assay showed that OsHAK1 could
complement the yeast mutant R5421 which lacks PM-localized K+ transporter TRK1 & TRK2
and requires high extracelluar K+ (>10 mM) for normal growth[37,38]. OsHAK19 showed a
weaker complementation, and R5421 transformed with OsHAK20 could not grow under low
K+ condition(<5 mM) (S15 Fig).

To test whether K+ uptake was affected in rupo pollen, we used atomic emission spectros-
copy to determine K+ content in pollen grains fromWT and bi-allelic plants. The mean K+

content was 8896 ±182 mg/kg in WT pollen but 12005 ± 241 mg/kg in rupo pollen, 35% higher
in rupo than WT pollen (Fig 5D). Thus, disruption of RUPO led to over-accumulation of K+ in
pollen. RUPO may control K+ homeostasis by interacting with potassium transporters. More-
over, we investigated the effect of K+ on PT growth and integrity. As shown in Fig 5E, 5F and
S16 Fig, PT integrity and germination rate of WT were approximately 70% under the condition

Fig 5. RUPO interacts with potassium transporters. (A) The intracellular domain (without juxtamembrane
region) of RUPO interacts with OsHAK1-C in yeast two-hybrid assay. (B) In vitro pull-down assay of RUPO and
OsHAK1/19/20 interaction. GST-RUPO-C or GST was detected by anti-GST antibody. MBP-OsHAK-C or MBP was
detected by anti-MBP antibody. (C) Co-immunoprecipitation assay of RUPO and OsHAK1/19/20 interaction. (D)
Determination of K+ in MPGs from wild-type and bi-allelic plants by inductively coupled plasma atomic emission
spectroscopy (ICP-OES). Results are presented as mean ± s.e.. Student’s test *p<0.05. (E) Effect of K+ on pollen
tube integrity in vitro. (F) Effect of K+ on pollen germination in vitro. Each data point is the result of at least four
replicates.

doi:10.1371/journal.pgen.1006085.g005

Receptor-Like Kinase RUPORegulates K+ Homeostasis

PLOS Genetics | DOI:10.1371/journal.pgen.1006085 July 22, 2016 9 / 23



of 0.05~5 mM KCl, however, an increase of K+ to 25 mM significantly decreased the PT integ-
rity of WT to about 1%. Notably, the pollen germination of WT and rupo were also severely
inhibited when the medium contained 25~200 mM K+ (Fig 5F and S16 Fig). These data indi-
cate that high K+ results in rupo phenotype.

RUPO is an active protein kinase and capable of intramolecular
phosphorylation
To examine RUPO kinase activity, we expressed and purified RUPO full-length and truncated
versions fused to maltose binding protein (MBP) (Fig 6A). Notably, significant cell lysis of
Escherichia coli cells occurred within the first hour of IPTG-induced expression of
MBP-RUPO, which indicates its cell toxicity. The complete intracellular domain (453~845 aa)
of RUPO was lethal in E. coli cells. Therefore, we expressed a JM-truncated intracellular
domain (515–845 aa) (MBP-RUPO515 or RUPO515) for phosphorylation assay.

Fig 6. Phosphorylation regulates RUPO-OsHAK interaction. (A) Schematic diagram of RUPO used in the
kinase assay and yeast-two hybrid assay. SP, signal peptide; TM, transmembrane domain; JM,
juxtamembrane region. MBP, maltose binding protein. (B) The full-length RUPO (the 28 aa signal peptide is
not included in this construct) is autophosphorylated, whereas its K543R point mutation version RUPO*, and
JM-truncated intracellular region (MBP-RUPO515, and RUPO515) have no kinase activity. RUPO also is
capable of phosphorylating MBP and MBP-RUPO515 but not RUPO515. (C) K543R point mutation abolishes
the interaction of RUPOwith OsHAK1 in yeast. JM and C-terminal region (788-845aa) are important
elements affecting the interaction of RUPO and OsHAK1. (D) MS/MS identification of phosphorylation sites in
the intracellular domain of RUPO. Phosphorylated residues are highlighted in bold red. JM region is
underlined. (E) A representative MS/MS spectrum of identified phosphopeptides. The matched b and y ions
are indicated.

doi:10.1371/journal.pgen.1006085.g006
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Autoradiography showed phosphorylation of MBP-RUPO with [γ-32P] ATP in vitro but
not its K543R version (aa substitution in ATP binding site) and the JM-truncated intracellular
domain versions. The undetectable autophosphorylation of the JM-truncated intracellular
domain was probably due to lack of JM, which may be necessary for autophosphorylation (Fig
6B). To elucidate whether autophosphorylation occurs in an intramolecular or intermolecular
manner, we incubated MBP-RUPO with its JM-truncated intracellular domain
(MBP-RUPO515 or RUPO515). MBP-RUPO could incorporate [γ-32P] into itself or the MBP
tag but not into the separate JM-truncated intracellular domain (Fig 6B), which suggests autop-
hosphorylation of RUPO in an intramolecular manner. The undetectable intermolecular phos-
phorylation in the JM-truncated intracellular domain may result from the presence of
phosphorylation sites only in JM. Thus, we enriched phosphorylated RUPO peptides for MS/
MS analysis. We identified 10 Ser/Thr phosphorylation sites in the intracellular domain: 3 in
JM and the remaining 7 in the kinase domain and C-terminal region (Fig 6D and 6E, S1
Table). Hence, RUPO is a functional kinase capable of intramolecular phosphorylation.

Next, we determined whether autophosphorylation was necessary for the RUPO interaction
with OsHAK1. We designed serial truncations of the intracellular domain of RUPO from the
respective N- and C-termini (Fig 6A and 6C). The minimal kinase domain (515–708 aa, pre-
dicted by NCBI CDD; 515–788 aa, predicted by SMART and PROSITE) alone interacted with
OsHAK1 in yeast. Interestingly, the presence of JM significantly reduced the interaction of
RUPO (BD453-708, BD453-788) with OsHAK1, which suggests that JM has an inhibitory effect
on the RUPO-OsHAK interaction (Fig 6C). However, both the intracellular domain (BD453-
845) and its truncated version (BD453-820) with JM still interacted with OsHAK1. Because JM
is phosphorylated during autophosphorylation of RUPO, we hypothesized that the phosphoryla-
tion on JM relieved its inhibitory effect on the RUPO-OsHAK interaction. Therefore, we exam-
ined interaction of four K543R mutants (BD453-845�, BD453-820�, BD453-788�, BD453-708�)
with OsHAK1. The destruction of RUPO autophosphorylation virtually abolished all growth of
yeast on quadruple dropout medium (Fig 6C). Therefore, JM plays roles in inhibiting the interac-
tion of RUPO with OsHAK1, and phosphorylation of JM relieves the inhibition effect.

Discussion
Studies of Arabidopsis have revealed that ANX1/2 and their closest homolog FER of the
CrRLK1L subfamily play important roles in PT tip growth possibly via the downstream
NADPH oxidases [10, 11, 13, 17]. Here, we identified a novel CrRLK1L member, RUPO, in the
monocot rice. The RUPO signaling pathway for PT growth and integrity may differ from that
of ANX1/2 and FER. First, RUPO is expressed specifically in pollen, whereas ANX1/2 tran-
scripts are highly detectable in pollen and moderately detectable in vegetative tissues [13], and
FER is expressed in various tissues except in pollen [10]. Second, RUPO is in a separate sub-
class, relative to ANX1/2 and FER, of the phylogenetic tree [39]. Thus, RUPO is not an ortholog
of ANX1 and ANX2 but rather is very close to At2g21480 and At4g39110 that are both
expressed specifically in pollen of Arabidopsis [39, 40]. ANX1/2 and FER have rice orthologs:
Os05g20150 and Os03g21540/Os01g56330, respectively [39]. Third, most rupo pollen tubes
burst immediately after germination in vitro. In vivo, most rupo pollen grains discharged on
germination or PTs ruptured before growing into the stigma. The rupo phenotypes were simi-
lar to but appeared to occur earlier than those of anx1anx2 [13, 14]. Finally, RUPO is required
for PT growth and integrity via downstream component K+ transporters. So, monocots and
eudicots may have multiple CrRLK1L signaling pathways to orchestrate PT growth and cross-
talk between PTs and female cells, and these pathways may further differentiate after the
monocot–dicot split, which occurred 160 million years ago[40].
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Phosphorylation and dephosphorylation are important mechanisms to regulate activities of
plant K+ channels [41, 42]. To our knowledge, no study has investigated the involvement of RLKs
in regulating plant K+ transporters. RUPO is a functional kinase and physically interacts with
potassium transporters OsHAK1, OsHAK19 and OsHAK20, with strong interaction with
OsHAK1, via the kinase domain. The inconsistent results between Y2H, pull down and IP were
possibly due to post-translational modifications or proper folding of OsHAK-C in different sys-
tems. The RUPO-OsHAK1 interaction depends on phosphorylation in the RUPO intracellular
domain, which indicates that autophosphorylation modifies RUPO status and in turn regulates
OsHAK1 activity via physical interaction. Consistent with this finding, rupo pollen contained 35%
greater K+ thanWT pollen, which suggests that RUPO negatively regulates OsHAK activities.

OsHAK1/19/20 are phylogenetically placed into one clade and function in high-affinity K+

uptake. Available public data show thatOsHAK1 is universally expressed in vegetative and repro-
ductive organs, with high levels in roots and anthers;OsHAK20 shows preferential expression in
anthers and stigma (http://www.bar.utoronto.ca/efprice/cgi-bin/efpWeb.cgi) andOsHAK19
shows preferential expression in anthers (http://rice.plantbiology.msu.edu/index.shtml). We
detected the full-length transcripts of all three genes in mature rice pollen. OsHAK1 and
OsHAK19 appeared to localize in PM and could complement yeast mutant defective in K+ uptake.
Knockout of OsHAK1 reduced K+ uptake in rice roots by ~80% under low exogenous K+ [37].
Thus, OsHAK1 may be an important K+ transporter for K+ homeostasis. Generally, the plant
cytoplasmmaintains a tightly regulated K+ concentration [42]. K+ is the major osmotically active
solute to maintain plant cell turgor and drives cell expansion. K+ homoeostasis plays central roles
in pollen hydration, germination and PT growth, and osmotic processes are important driving
forces for PT growth [23, 24, 43–46]. In maize, the application of synergid-expressed ZmES4 trig-
gered the opening of PT-expressed K+ channel KZM1, thus leading to rapid PT burst [25]. Our
study shows the correlation of K+ over-accumulation and burst on germination of rupo pollen.
Changes in K+ homeostasis in pollen and PTs may represent a physiological mechanism to regu-
late PT growth and burst by affecting osmotic pressure. Although there was only a mild increase
(35%) in the overall K+ inside the rupo pollen grains, the cytoplasmic K+ level may further
increase during the hydration and germination process. It was also possible that at the growing
pollen tube tip, much higher osmotic pressure might be induced due to an uneven distribution of
K+. Currently two different models, the cell wall model and hydrodynamic (osmotic) model are
commonly used to explain the mechanism of pollen tube growth and discharge [47]. The previ-
ously well characterized CrRLK1L members ANX1/2 suggest that Arabidopsis PT burst is proba-
bly caused by cell wall damage triggered by ROS. However, our research suggests rapid osmotic
pressure change may also contribute to PT rupture in monocot rice. In fact, osmotic shock is an
effective method to isolate sperm cells from PTs [48–51]. In low-osmotic solution, PTs of tomato
and lily burst easily by rapid water influx, emitting sperm cells and cytoplasm. These results sug-
gest osmotic pressure alone is sufficient to induce PT burst. It will be very interesting to see
whether CrRLK1Ls use both or distinct mechanisms to burst the pollen tube in a plant species.

Our data indicate the CrRLK1L–potassium transporter module as a novel CrRLK1L signal-
ing pathway involved in PT growth and integrity. The proposed work model is as follows: dur-
ing pollen maturity and PT growth, the PM-localized RUPO is autophosphorylated, then
interacts with and negatively regulates K+ transporter activities to establish K+ homeostasis for
pollen germination and PT growth (Fig 7). Studies showed that among functionally identified
CrRLK1L members, RUPO is closest to THE1 of Arabidopsis, which can sense cell wall damage
[39, 40]. Furthermore, synergids have high K+ concentration [52]. Therefore, with the arrival
of PTs, the receptive synergid degenerates and releases K+, which may be transported into PTs.
Impressively, we reveal that phosphorylation and dephosphorylation subtly control the inter-
action of RUPO with OsHAKs: phosphorylation established and dephosphorylation abolished
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the interaction. Together, these lines of evidence point to the possibility that the CrRLK1L-
potassium module may involve in timely rupture and discharge of PTs. RUPO may sense sig-
nals from cell wall damage caused by the interaction of PTs and the receptive synergid, thereby
releasing the inhibitory effect on K+ transporters, to lead to PT rupture and discharge via
increasing K+ content in PTs. Admittedly, we cannot exclude the possibility that other K+

transport systems, such as shaker K+ channels may involve in this process. Further screening of
RUPO-interacting K+ channels and signals from female tissues or from cell wall damage caused
by male–female tissue interaction may be important to clarify this notion.

Materials and Methods

Plant materials and genotyping
Rice plants were grown under natural condition or in the greenhouse. T-DNA insertion
mutant rupo+/- (Oryza sativa ssp. japonica cv. hwayoung) was obtained from the POSTECH
database (http://cbi.khu.ac.kr/RISD_DB.html).

Fig 7. A proposed RUPO-potassium transporter signaling model to control pollen tube growth and
integrity via regulating K+ homeostasis. The PM-localized RUPO is autophosphorylated, interacts with
OsHAKs, and negatively regulates the high-affinity K+ transporter activity, finally establishing a K+

homeostasis. As the pollen tube enters the receptive synergid, unknown signals may cause change in RUPO
phosphorylation, the inactivated RUPO no longer interacts with OsHAKs. The released OsHAKs cause K+

influx and over-accumulation in pollen tubes. High level potassium-mediated increase in turgor pressure
leads to tube discharge.

doi:10.1371/journal.pgen.1006085.g007
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To obtain CRISPR-knockout lines, two sgRNA target sites were separately cloned into a
modified pCambia1300 vector with sgRNA driven by OsU6 promoter, and optimized Cas9
was driven by ubiquitin promoter. Recombinant plasmids were transformed into Agrobacter-
ium tumefaciens strain EHA105 and separately infected embryo-derived rice callus from
hwayoung wild-type seeds. Transgenic rice seedlings were selected by using hygromycin. The
mutant rupo+/- and its progeny plants were genotyped by using gene-specific primers and
T-DNA border primers. CRISPR-knockout plants were genotyped by DNA sequencing.

For genomic DNA extraction and transforming of protoplasts, rice seeds were immersed in
75% ethanol (v/v) for 1 min and then in 2.5%(w/v) NaClO for 60 min. The surface-sterilized
seeds were grown on half-strength Murashige & Skoog basal medium [53] supplemented with
1% sucrose and 0.8% agar, and kept at 28°C for 7–10 days in darkness before use.

Pollen at uninucleate microspore (UNM), BCP, and TCP stages were isolated from anthers.
MPGs were collected from flowering panicles by using a modified vacuum cleaner. GPGs were
obtained by pooling freshly collected MPGs in a liquid germination medium (4 mg/L H3BO3,
0.3 mM Ca(N03)2.4H2O, 0.3 mg/L VB1, 10% PEG4000, 250 mM sucrose, pH 5.8) and incubat-
ing at 28~32°C for 15 min with gentle shaking.

Molecular cloning of RUPO
Genomic DNA was extracted from etiolated rice seedlings by using a DNeasy plant mini kit
(QIAGEN). Genomic RUPO, including a 2.8-kb promoter, the coding sequence, and 0.8-kb
3’UTR, was PCR-amplified with KOD-Plus-Neo DNA polymerase (TOYOBO) and cloned
into the pEasy-blunt-zero vector (TransGen). To visualize the tissue expression pattern of
RUPO::GUS, the 2.8-kb native RUPO promoter was fused to the pPLV15 vector via LIC clon-
ing [54]. For genetic complementation, Genomic RUPO was fused into a modified pCam-
bia1300 vector. The recombinant constructs were confirmed by DNA sequencing, then used
for transforming rice callus induced from mature embryos.

Expression analysis
For mRNA level examination, total RNA was isolated from various tissues by using the RNeasy
Plant Mini Kit (QIAGEN). Isolated RNA was reverse transcribed by using SuperScript III
reverse transcriptase (Invitrogen). Gene-specific primers were used for RT-PCR and qPCR (S2
Table). For protein level assay, proteins were separated by 12% SDS-PAGE. Proteins in a gel
were electrophoretically transferred onto a PVDF membrane and detected with anti-RUPO
antibody, which generated by immunizing rabbits (MBL, Beijing) with E. coli-expressed extra-
cellular domain of RUPO.

Transient expression assays
To generate 35S::RUPOΔC-GFP and Ubi::RUPO-GFP constructs, RUPOΔC(1-500aa) and full-
length RUPO were cloned into pA7-GFP and a modified pCambia1302 vector, respectively.
For subcellular localization of OsHAKs-GFP, the coding sequences of OsHAK1/19/20 were
fused to the C-terminal of GFP, which was driven by maize ubiquitin promoter. An amount of
10 μg of each plasmid DNA was precipitated onto submicron gold particles (1 μm gold). Parti-
cle bombardment of onion epidermal cells and lily pollen (Lilium davidi var. unicdor cotton)
was carried out in a PDS-1000/He particle-delivery system with a target distance of 6.0 cm
from the stopping plate at helium pressure of 1,100 p.s.i. After bombardment, onion epidermal
cells were incubated on half-strength Murashige and Skoog basal salts containing 0.8% agar at
25°C overnight. For transient expression in lily pollen, 50 mg dry lily pollen was rehydrated at
4°C overnight and bombarded with 10 μg of plasmid. The bombarded pollen was incubated in
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germination medium [1 mM KCl, 1.6 mMH3BO3, 0.5 mM CaCl2, 15% sucrose (w/v), pH5.8]
at 26°C for 6 h with gentle shaking at 60 rpm before observation. Fluorescence images were
acquired by laser confocal microscopy (Olympus FV1000MPE).

Pollen assays
For Alexander staining, mature anthers before anthesis were cut and immersed in Alexander’s
solution [55] overnight at room temperature. Stained anthers were crushed, and pollen grains
were observed under bright field microscopy. For 4’,6-diamidino-2-phenylindole (DAPI)
staining, mature pollen grains were fixed in Carnoy's solution (30% chloroform, 10% acetic
acid, 57% ethanol) for 2 h at room temperature and stained in a 1 μg/mL DAPI solution (50%
glycerol, 140 mMNaCl, 2.7 mM KCl, 10 mMNa2HPO4, 1.8 mM KH2PO4, pH 7.3) for 10 min
at room temperature in the dark. DAPI-stained pollen grains were observed under UV light.
For GUS staining, rice florets were harvested and fixed in 90% (v/v) acetone at room tempera-
ture for 1 h. After washing with 0.1M K2HPO4 (pH 8.5), these florets were immersed in 1 mM
K4[Fe(CN)6], 1 mM K3[Fe(CN)6], 1 mM X-Gluc, 0.1% Triton X-100, 10 mM EDTA, 100 mM
K2HPO4 (pH 8.5) and incubated at 37°C overnight in the dark. Pollen coat was observed under
a scanning electric microscope (HITACHI S-800) and ultrastructure was observed under a
transmission electron microscopy (JEM-1230) as described [56].

To examine pollen germination and burst rate in vitro, pollen grains from dehisced anthers
were directly shed onto a solid germination medium [0.8% low gelling temperature agarose II
(Amresco), 4 mg/L H3BO3, 0.3 mM Ca(N03)2.4H2O, 0.3 mg/L VB1, 10% PEG4000, 250 mM
sucrose, pH 5.8] which was layered onto a glass slide (Leica). Briefly, the agarose medium was
mixed and molten by heating, then 3×2 cm pads were drawn by using 0.5 mL of molten agarose
medium on slides. The slides were left to cool to room temperature, placed in 150-mm tissue
culture dishes (Corning) and used within 30 min. Immediately after floret opening, florets
were gently excised by using scissors, and pollen grains were shed onto the solid germination
medium. After 10-min incubation at 28~30°C, the slides were observed by microscopy with a
10×objective and images of 3 randomly chosen fields were photographed. Only the images
with more than 15 pollen grains and with pollen germination rate> 50% were used for subse-
quent pollen germination rate or integrity analysis.

In vivo PT growth was observed by aniline blue staining. At 6 h after artificial or natural pol-
lination, rice pistils from mutant and wild type plants were cut, and fixed in Carnoy's solution
overnight. The pistils were then washed 5 times with water, softened by incubating in 1 mol /L
NaOH at 55°C for 30 min and stained in 0.1% (w/v) aniline blue (in 0.1 M K2HPO4, pH 8.5) at
room temperature for 4–16 h in the dark. Fluorescent images were observed with a ZEISS
microscope (Axio Imager A1) under UV light.

Autophosphorylation assay
cDNAs encoding full-length RUPO (29–845 aa, without the signal peptide) and the intracellu-
lar domain (515–845 aa) were PCR-amplified. The cDNA encoding the kinase-deficient ver-
sion (29–845 aa with K543R mutation) was prepared with site-directed mutagenesis to change
the essential K at 543 to R in the conserved ATP binding domain. The cDNAs were cloned in-
frame into pETMALc-H vector at BamH I andHind III sites, sequenced and transformed into
BL21 cells (Rosetta DE3) to generate maltose-binding protein (MBP)-tagged proteins.

BL21 cells were grown in LB medium at 37°C to OD600 of 0.6, then treated with 0.1 mM
IPTG at 25°C for 4 h. Cells were harvested by centrifugation, resuspended in cold HEPES
buffer (50 mMHEPES, 200 mMNaCl, pH 7.4), supplemented with 1 mM DTT, 1 mg/mL lyso-
zyme, and 1 mM PMSF, and lysed by sonication. Lysate was centrifuged at 15,000 g at 4°C for
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15 min, and target proteins in the supernatant were purified with Amylose resin (New England
Biolabs). MBP tag was removed by adding approximately 10 U thrombin (GE Healthcare) per
mg recombinant proteins, and on-column–cleaved overnight at room temperature. Flow-
through containing target proteins was passed through a HiTrap Benzamidine FF column (GE
Healthcare) to remove residual thrombin.

In vitro kinase assay was carried out in a 30-μL reaction mixture containing 50 mMHEPES,
pH 7.4, 10 mMMnCl2,10 mMMgCl2, 1 mMDTT, 20 μM unlabeled ATP, 10 μCi [γ-32P]ATP
(3000 Ci/mmol, 10 mCi/mL, Perkin Elmer) and 6 μg each protein. Reactions were stopped
after 30 min at room temperature by adding 10 μL 4×SDS-PAGE loading buffer and heating at
95°C for 5 min. Proteins were separated by 10% SDS-PAGE. The gel was stained with Coomas-
sie brilliant blue, destained, dried and exposed to x-ray film.

Yeast two hybrid assay
The pGBKT7 and pGADT7-Rec vectors (Clontech) were used to construct bait and prey
cDNA library, respectively. The DNA fragment encoding the intracellular domain (515–845
aa, without JM) of RUPO was ligated in-frame into pGBKT7 at NdeI and EcoRI sites to pro-
duce a bait construct. The bait plasmid was transformed into yeast strain Y2HGold, and bait
expression was confirmed by western blot assay with anti-myc antibody. Total mRNAs from in
vivo-germinated pollen were prepared by using the RNeasy plant mini kit (QIAGEN) and on-
column–digested with DNase I (QIAGEN). cDNA were synthesized (CDS III primer) and co-
transformed with linearized pGADT7-Rec vector into yeast strain Y187 by using the Mate &
Plate library system (Clontech). The yeast cells were then spread on 100×150 mm SD/-Leu
agar plates. The library screening was performed by incubating 1 mL pooled library (Y187)
with bait strain (Y2HGold) at 30°C for 22 h with gentle shaking at 40 rpm. About 5 million dip-
loids were screened with a mating efficiency of 2.8%. Mating diploids were first spread on SD/-
His/-Leu/-Trp plates, and the selected colonies were transferred onto SD/-Ade/-His/-Leu/-Trp
plates. Only colonies that grew on SD/-Ade/-His/-Leu/-Trp plates and turned blue in the pres-
ence of x-α-Gal were used for plasmid rescue and DNA sequencing.

Pull down assay
To express the C-terminal domains of OsHAKs, PCR products corresponding to the C-termi-
nal domains (683–792 aa) were cloned into pETMALc-H at BamH I and Hind III sites to gen-
erate MBP-tagged proteins. BL21 cells (Rosetta DE3) harboring recombinant plasmids were
grown in LB medium at 37°C to OD600 0.6, then treated with 0.1 mM IPTG at 20°C for 7 h.
The resultant cells were harvested by centrifugation at 5,000 g at 4°C for 10 min, suspended in
washing buffer (20 mM Tris-HCl, 200 mMNaCl, 1 mMDTT, 1 mg/ml lysozyme, and 1 mM
PMSF, pH 7.4), and lysed by sonication. The lysate was centrifuged at 12,000 g at 4°C for 15
min, and MBP-tagged proteins in the supernatant were purified with Amylose resin (New
England Biolabs).

For expression of GST-RUPO-C, PCR product corresponding to 515~845 aa residues of
RUPO was cloned into pGEX-4T-1 at BamH I and EcoR I sites, sequenced and transformed
into BL21 cells (DE3). The cells were grown in LB medium at 37°C to OD600 0.6, treated with
0.1 mM IPTG at 20°C for 10 h and harvested by centrifugation. The pelleted cells were sus-
pended in PBS (140 mMNaCl, 2.7 mM KCl, 10 mM Na2HPO4, and 1.8 mM KH2PO4, 1 mM
DTT, 1 mg/mL lysozyme, and 1 mM PMSF, pH 7.5), then lysed by sonication. The lysate was
centrifuged at 12,000 g at 4°C for 15 min, and GST-tagged proteins in the supernatant were
purified with glutathione sepharose 4B beads (GE).
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Protein interaction was tested by in vitro pull-down assay. Briefly, 100 μg of bait proteins
(MBP-tagged proteins or MBP) were incubated with 20 μL amylose resin (NEB) in washing
buffer (20 mM Tris-HCl, 150 mMNaCl, 1 mM DTT, pH 7.5). The resin was washed 3 times
with washing buffer and the bead–protein complexes were incubated with 15 μg prey proteins
(GST-RUPO-C or GST) in wash buffer at 4°C for 3 h, and washed again for 5 times. The pull-
down samples were eluted with 1×SDS loading buffer and analyzed with anti-GST and anti-
MBP antibodies.

Co-immunoprecipitation (Co-IP) assay
Approximately 2×106 rice protoplasts co-transformed with indicated plasmids were lysed with
400 μL extraction buffer [10 mMHEPES, 100 mMNaCl, 1 mM EDTA, 10% (v/v) glycerol,
0.5% Triton X-100, pH 7.5] supplemented with 1×protease inhibitor cocktail (Roche). The
samples were briefly sonicated and centrifuged at 5,000 g at 4°C for 5 min. The supernatant
was incubated with 20 μL anti-FLAG agarose (MBL) at 4°C for 3 h with gentle shaking. The
beads were collected and washed 5 times with washing buffer (10 mMHEPES 100 mMNaCl, 1
mM EDTA, 10% glycerol, and 0.1% Triton X-100, pH 7.5), boiled in 1×SDS loading buffer and
examined by western blot analysis with anti-GFP or anti-FLAG antibody.

LC-Q-TOF MS/MS identification of phosphorylation sites
Briefly, 12 μg MBP-RUPO was incubated in kinase buffer (50 mMHEPES, pH 7.6, 10 mM
MnCl2, 10 mMMgCl2, 1 mMDTT, 100 μMATP) at 30°C for 30 min, and autophosphoryla-
tion was stopped by adding 0.1% RapiGest SF (Waters). Protein samples were reduced in 5
mMDTT at 60°C for 30 min and alkylated with 15 mM Iodoacetamide at room temperature in
the dark for 30 min. The resultant proteins were enzymatically digested by adding 1:20 (w/w)
trypsin (Sigma) or endoproteinase Glu-C (Sigma) and incubated overnight at 37°C. The diges-
tion was terminated by adding 0.5% trifluoroacetic acid, and the mixture was incubated again
at 37°C for 40 min. After centrifugation at 20,000g for 10 min, the supernatant was used for
phosphopeptide enrichment by using a Titansphere Phos-TiO2 kit (GL Sciences). The enriched
peptides were divided in half and dried in SpeedVac (Thermo). One half was treated with alka-
line phosphatase before MS analysis, and the other half was used for MS analysis directly.
LC-ESI-MS/MS analysis involved a TripleTOF 5600 mass spectrometer (AB SCIEX) equipped
with a NanoSpray III source. Separation of peptides was achieved on an Eksigent 1D Plus Ultra
LC system incorporating a C18-ChromXP column (0.075×150 mm, 3 μm, 120Ǻ, Eksigent).
Peptides were on-line desalted for 10 min at a flow rate of 2 μL/min by using an in-house
packed C18-Trap column (0.1×2.5 mm, IntegraFrit ProteoPep II) and eluted at 0.3 μL/min with
a 90-min linear gradient of acetonitrile/H2O containing 0.1% formic acid. MS-TOF scans were
recorded for 0.25 s, and the 40 most-abundant ions in the survey spectra were automatically
selected for collision-induced dissociation. The MS/MS raw data were searched against the
Oryza sativa database (NCBInr) by using ProteinPilot 4.5 (Paragon method) and the search
parameters: Cys. Alkylation: Iodoacetamide; Special Factors: Phosphorylation emphasis; ID
Focus: Biological modifications; Search Effort: Thorough; Detected Protein Threshold [Unused
ProtScore (Conf)] >:0.05 (10.0%). For Mascot search, the data file was converted to a Mascot
generic format with use of ProteinPilot 4.5, then searched by using an in-house Mascot server
(version 2.4). Mascot search parameters were set to mass tolerance of 0.05 Da for the precursor
ions and 0.1 Da for the fragment ions. One trypsin/Glu-C missed cleavage site was allowed.
Peptides with +2, +3 and +4 net charge were checked. Carbamidomethylation of cysteine was
set as a fixed modification, and oxidation of methionine and phosphorylation were set as vari-
able modifications. Both Paragon and Mascot searches involved false discovery rate analysis,
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and a threshold corresponding to a false discovery rate of� 1% was used to determine confi-
dent peptide matches.

Inductively coupled plasma atomic emission spectroscopy (ICP-OES)
To determine the potassium level in MPGs, MPGs from the wild type and bi-allelic CRISPR
plants were collected and dried in an incubator at 40°C for 1 h. About 2 mg dried MPGs were
placed in 2 mL microtubes containing 1mL of 2% (v/v) nitric acid and 30 glass beads (2 mm,
Merck), and broken by using a FastPrep-24 homogenizer (MP Biomedicals) at 6.5 m/s for 60 s.
The control tubes contained the same amount of 2% nitric acid and glass beads but without
MPGs. The homogenates were centrifuged twice at 12,000 g for 15 min. In total, both the sam-
ples and control were extracted with 2% nitric acid for 3 times. The supernatants were pooled
and analyzed by using an iCAP 6300-ICP-OES CID Spectrometer (Thermo Scientific). Potas-
sium standard (Cat. 96665) for determination was purchased from Sigma-Aldrich.

Yeast complementation
The coding sequences of OsHAK1, OsHAK19, and OsHAK20 were cloned into yeast expression
vector YES3 and transformed into R5421 strain (trk1Δ trk2Δ), which lacks two PM potassium
transporters [57,58]. The transformants were incubated overnight in SD/-Trp medium supple-
mented with 100 mM KCl. Yeast cells were harvested by centrifugation and resuspended in
H2O to an OD600 of 0.8. 1/10 serial diluted cells were dropped on arginine phosphoric (AP)
medium [59] with different K+ concentrations. These plates were incubated at 30°C for 3 d.

Accession numbers
Sequence data from this article can be found in the Rice Genome Annotation Project databases
under accession nos. LOC_Os06g03610 (RUPO), LOC_Os04g32920 (OsHAK1),
LOC_Os02g31910 (OsHAK19), LOC_Os02g31940 (OsHAK20).

Supporting Information
S1 Fig. Phenotypic observation of T-DNA insertional mutant rupo+/-. (A) Images of wild-
type, rupo+/- and complementation plants. Scale bars, 10 cm. (B) Images of rice florets har-
vested just before dehiscence. Scale bars, 2 mm. (C) Southern blot analysis of rupo+/-. (D) PCR
genotyping of rupo+/- and complementation plants.
(TIF)

S2 Fig. Expression pattern of RUPO::GUS. (A) A rice floret, (B) pistil, (C) anther, and (D)
pollen grains. GUS gene was driven by a 2.8-kb RUPO promoter. The rice florets were har-
vested when the spike was fully emerged but without dehiscence. Scale bars, 100 μm.
(TIF)

S3 Fig. Anti-RUPO polyclonal antibodies specifically reacted with native RUPO. IP, Immu-
noprecipitation of native RUPO by anti-RUPO. GPG, crude membrane proteins extracted
from germinated pollen grains. MPG, crude membrane proteins extracted from mature pollen
grains. Minus sign denotes pre-immune serum; plus sign denotes anti-RUPO. IgG HC denotes
heave chains of immunoglobulin G.
(TIF)

S4 Fig. IP-MS/MS identification of native RUPO. Peptide sequences identified by MS/MS
were highlighted (green, underlined). Note that native RUPO is lack of signal peptide (1~28 aa).
(TIF)
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S5 Fig. Morphological observation of mature pollen grains. (A,B) DAPI staining of wild-
type (A) and rupo+/- pollen (B). (C,D) Alexander staining of wild-type (C) and rupo+/- pollen
(D). (E,F) Scanning electron microscopy of wild-type (E) and rupo+/- pollen (F). (G to J)
Transmission electron microscopy of wild-type (G,H) and rupo+/- pollen (I,J). Scale bars,
50 μm in (A) to (F), and 2 μm in (G) to (J).
(TIF)

S6 Fig. Genotyping of CRISPR plants. (A) Schematic of RUPO Protein. Arrowheads denote
the two target sites sg1 and sg2 on the extracellualr domain of RUPO. The target sequences
(green) and protospacer-adjacent motif sequence (red) are indicated. SP, signal peptide; TM,
Transmembrane domain. (B) sgRNA:Cas9-induced RUPO-sg1 and RUPO-sg2mutations in
transgenic rice plants. The nucelotide insertions are represented by lower case letters, and dele-
tions are represented by dash marks(-).
(TIF)

S7 Fig. CRISPR mutants show normal vegetative and reproductive growth. (A) Plant phe-
notype of wild-type, (B) bi-allelic homozygous CRISPR mutant, and (C) mono-allelic heterozy-
gous CRISPR mutant. Scale bars, 10 cm. (D-I) Images of rice florets harvested just before
dehiscence. Scale bars, 1mm. (J,K,L) Alexander staining of pollen grains. Scale bars, 100 μm.
(M,N,O) DAPI staining of pollen grains. Scale bars, 50 μm. (P) A wild-type anther before
dehiscence. (Q) A wild-type anther after dehiscence. (R) A bi-allelic anther before dehiscence.
(S) A bi-allelic anther after dehiscence. (T) A mono-allelic anther before dehiscence. (U) A
mono-allelic anther after dehiscence. Bars, 200 μm.
(TIF)

S8 Fig. Pollen tubes from homozygous bi-allelic mutant burst during in vitro germination.
(A,B,C) In vitro germination assays of wild-type (A), mono-allelic CRISPR (rupo-/+) (B) and
bi-allelic CRISPR (rupo-/-) pollen (C). Red arrowheads indicate ruptured pollen tubes. Scale
bars, 100 μm. (D) Quantification of pollen germination rate and percentage of pollen tube
integrity. The results are presented as mean±s.e.. 588 wild-type pollen (from 6 plants), 280
mono-allelic pollen (from 2 plants) and 444 bi-allelic pollen (from 3 plants) were used for sta-
tistical analysis.
(TIF)

S9 Fig. Percentage of germinated pollen grains in the aniline blue-stained stigma. After ani-
line blue staining, residual germinated pollen grains (GPGs) and non-germinated pollen grains
that attached to the stigma were counted separately. 544 wild-type pollen and 138 rupo pollen
were used for statistical analysis. The results are presented as mean±s.e..
(TIF)

S10 Fig. Bi-allelic pistil is fertile. (A) Wild-type was used as pollen donor, bi-allelic as pollen
receptor. White arrows indicate florets that produce seeds (B) Bi-allelic was used as pollen
donor, wild-type as pollen receptor. Note that all glumes are empty. (C) Image of a bi-allelic
spike 30 days after self-pollination. (D) Image of a wild-type spike 30 days after self-pollination.
(E) Aniline blue staining shows a wild-type pollen tube targeting a bi-allelic micropyle. (F) A
bi-allelic pollen grain germinated in a wild-type pistil but failed to reach the ovule. Scale bars, 2
cm in (A-D), 200 μm in (E,F).
(TIF)

S11 Fig. Protein sequence analysis of OsHAKs. Protein sequence alignment of OsHAK1,
OsHAK19 and OsHAK20 was performed with Clustal Omega program. Asterisks indicate
identical amino acids. The dots indicate similar amino acids. Note that OsHAK1 contains an
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extra 35 amino acid residues (678-712aa) in the C-terminus.
(TIF)

S12 Fig. Topology prediction of OsHAK1. OsHAK1 protein contains 792 amino acid resi-
dues and 12 transmembrane domains, with N- and C-terminus inside the cytoplasm. Topology
and transmembrane domains were predicted by using HMMTOP 2.1 software.
(TIF)

S13 Fig. Yeast two-hybrid analysis of RUPO interaction with different C-tails of OsHAKs.
The C-tails of OsHAK1, OsHAK6, OsHAK17, OsHAK19, OsHAK20, OsHAK23, OsHAK25,
and OsHAK26 were cloned from total RNA of mature pollen grains. The 77 aa length (A) and
110 aa length (B) C tails were used for the interaction assays.
(TIF)

S14 Fig. Subcellular localization of OsHAK1, OsHAK19 and OsHAK20. (A to F) Subcellular
localization of the Ubi::OsHAKs-GFP fusion proteins in onion epidermal cells. (A) Single con-
focal section and (D) bright-field image of the cell bombarded with Ubi::OsHAK1-GFP plas-
mid. (B) Single confocal section and (E) bright-field image of the cell bombarded with Ubi::
OsHAK19-GFP. (C) Single confocal section and (F) bright-field image of the cell transformed
with Ubi::OsHAK20-GFP. (G to L) Transient expression of Ubi::OsHAK1-GFP (G,J), Ubi::
OsHAK19-GFP (H,K), and Ubi::OsHAK20-GFP (I,L) in lily pollen tubes. Scale bars, 20 μm.
(TIF)

S15 Fig. Complementation assay of OsHAK1/19/20 in a K+ uptake deficient yeast strain.
R5421 strain were transformed with OsHAK1/19/20 or expression vector pYES3 (control), and
the transformants were dropped onto AP medium in 1:10 serial dilutions.
(TIF)

S16 Fig. Effects of K+ on pollen germination and tube integrity in vitro. The original pollen
germination medium contained 50 μm K+. The KCl concentrations are indicated. Scale bars,
50 μm.
(TIF)

S1 Table. Identification of 10 in vitro phosphorylation sites of RUPO. aThe amino acid
sequence of phosphorylated peptides, where Ser/Thr phosphorylation and carbamidomethyl mod-
ification are denoted by [Pho],[CAM] respectively. bThe experimentally measured monoisotopic
mass for the precursor ion fragmented. cThe difference in mass between the precursor MW and
the theoretical MW of the matching peptide sequence. dPeptide confidence given by ProteinPilot
4.5. eMascot score. Individual ion score>34 (for trypsin) or score>29 (for Glu-C) means the
probability of randommatch is less than 0.05. In total, the MS/MS data covered> 96.95% amino
acid sequence of the intracellular domain, including all Ser/Thr/Tyr residues except for Tyr- 588.
(PDF)

S2 Table. List of primers.
(PDF)

S1 Movie. In vitro germination assay of wild-type pollen.
(AVI)

S2 Movie. In vitro germination assay of rupo pollen.
(AVI)

S3 Movie. Dynamics of RUPO-GFP foci at the tip region of lily pollen tube. RUPO-GFP
was excited by a 473-nm laser. Fluorescence signals were collected by using VA-TIRFM, which

Receptor-Like Kinase RUPORegulates K+ Homeostasis

PLOS Genetics | DOI:10.1371/journal.pgen.1006085 July 22, 2016 20 / 23

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006085.s012
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006085.s013
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006085.s014
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006085.s015
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006085.s016
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006085.s017
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006085.s018
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006085.s019
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006085.s020
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006085.s021


consisted of an inverted microscope(IX-71, Olympus), TIRFM illumination module(IX2-R-
FAEVA-2, Olympus) and an Olympus 100× PlanApo oil objective.
(AVI)

S4 Movie. Dynamics of RUPO-GFP foci at the shank region of lily pollen tube.
(AVI)
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