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Dear Editor, 20 

Metabolomics is a rapidly emerging field of post-genomic research that aims to 21 

comprehensively analyze all metabolites in biological samples. Potential biomarkers that 22 

distinguish prostate cancer samples were successfully identified through metabolomics  23 

analysis (Sreekumar et al., 2009). Metabolome quantitative trait loci (mQTL) and 24 

genome-wide association studies coupled with metabolomics analysis (mGWAS) also 25 

became efficient tools to decipher the genetic basis of complex metabolic traits in large 26 

populations (Gong et al., 2013; Chen et al., 2014). 27 

Liquid chromatography-mass spectrometry (LC-MS) techniques widely used for 28 

metabolomics analysis allow for the highly sensitive, high throughput detection of 29 

thousands of metabolites (Chen et al., 2013). However, LC-MS unavoidably yields a large 30 

number of false positive signals mixed with true biological signals (Yu et al., 2013; Broadhurst 31 

and Kell, 2007). Without the means to confidently discriminate and evaluate the detected 32 

signals, biomarker discovery turns out to be misleading, or downright impossible. 33 

Metabolomics is routinely used to compare the relative concentrations of metabolites 34 

amongst different samples. For this, the monitored signals must fall within the quantitative 35 

dynamic range and show a good quantitative correlation with the amounts of the 36 

compounds of interest. Thus, it is necessary to systematically evaluate the quantitative 37 

performance of each peak. Isotope-labeling of internal standards or the whole metabolome 38 

(Giavalisco, 2009) are powerful tools to improve compound annotation and relative 39 

quantification. Standard mixtures (Phinney et al., 2013) can also be used to quantitatively 40 

analyze a selected set of known metabolites. Artificial biological gradients (Redestig et al., 41 

2011) may allow the exploration of matrix effects and quantification performance. Here, we 42 

report a novel strategy for a comprehensive LC-MS-based metabolomics analysis that 43 

enables the unambiguous and facile discrimination of biological and non-biological signals, 44 

and improves the quantification accuracy of metabolites without labeling or other 45 

specialized techniques. 46 

For a LC-MS-based metabolomics experiment, we prepare a blank sample, a Quality 47 

Control mixture (QC_mix) that combines all samples in equal proportions, and a dilution 48 

series of the QC_mix (Figure 1A). First, three to six replicates of the blank sample are 49 
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analyzed to balance the instrument. This also precludes contaminating the system with the 50 

biological samples. Next, the QC_mix is analyzed in six or more technical replicates to 51 

identify peaks that can be reproducibly detected. Third, the dilution series of the QC_mix is 52 

analyzed, proceeding from the most dilute (16 times dilution, DS_1/16x) to the most 53 

concentrated (two times concentration, DS_2X) (Figure 1A). Finally, the individual samples 54 

are analyzed separately in a random order. This data acquisition pipeline enables the 55 

discernment of true biological signals, and the building of calibration curves for the 56 

quantification of all metabolites, including unknown peaks. 57 

Figure 1B illustrates the principles of distinguishing signals derived from true 58 

metabolites from those that have a non-biological origin. Peak 3 is absent from the blank 59 

and its signal intensity displays a good quantitative response in the dilution range. Such 60 

peaks are considered to originate from the biological source and have good quantitative 61 

performance. Peak 2 is detected in the blank sample and its signal intensity is independent 62 

of the dilution. Such peaks may derive from the chromatography solvent, or from column 63 

contaminants. Peak 1 is also present in the blank sample, but its signal intensity is 64 

dependent on the dilution. Such peaks may represent contaminations introduced during 65 

biological extract preparation, or impurities from labware (Supplemental Table S1). 66 

We developed a hierarchical five-step filtering approach which applies these principles 67 

to comprehensive metabolomics experiments that often present thousands of peaks 68 

(Supplemental Results). To validate this LC-MS-based metabolomics strategy, we prepared 69 

and analyzed two groups of artificial samples, each including 20 standard compounds. In 70 

total, 1,342 peaks were enumerated from these artificial samples after standard peak 71 

extraction and alignment (Figure 1C). Step 1, the reproducibility check, eliminated 1,053 72 

peaks as these were detectable less than five times in the six replicates of the QC_mix. Step 73 

2, the variation check, filtered out a further 40 peaks since their relative standard deviation 74 

(RSD) was >20% in the six QC_mix replicates. Another 104 peaks failed to satisfy Step 3, the 75 

blank check, since they showed a peak area ratio of blank to sample (Ratio_B/S) of > 1%. Step 76 

4, the response check, eliminated an additional 28 peaks because these had an 77 

unsatisfactory quantitative correlation (r<0.9) in the QC_mix dilution series. Finally, 78 

re-extractionand manual inspection of the peaks with an r between 0.9 and 0.99 (Step 5) 79 
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disqualified a further 17 signals, resulting in a final set of 102 peaks. Remarkably, all 20 80 

standard compounds in the artificial samples passed this strict, hierarchical filtering process, 81 

while 92.4% of the peaks were eliminated as false positives or peaks with insufficient 82 

quantitative performance. Of the final set of 102 filtered peaks, 53 were identified to derive 83 

from the 20 standard compounds and their adductor fragment ions. A further 36 peaks were 84 

de-replicated to 21 unknown metabolites. However, these peaks were also deduced to 85 

originate from the 20 standards, because their concentration ratios were very similar to 86 

those of the standards in the artificial samples(Supplemental Figure S5, Supplemental 87 

information and Additional supplementary Data 1). These unknown compounds may be 88 

minor impurities present in the standards. Only 13 peaks assigned to 11 compounds had an 89 

unknown origin. 90 

In a biological sample, the absolute concentration of most compounds represented by a 91 

peak will remain necessarily unknown due to the absence of standards. To overcome this 92 

limitation, our strategy introduces a relative concentration index (RCI) as an arbitrary 93 

concentration. To calculate the RCI, we build a relative quantitative model for the calibration 94 

of each analyte in the QC_mix dilution series, using a custom Python script (Supplemental 95 

Methods). We assume that the RCI of any compound is 3,200, 1,600, 800, 400, 200, and 100 96 

arbitrary units in a 2x, 1x,1/2x, 1/4x, 1/8x, and 1/16x sample dilution, respectively. Using 97 

these assumptions, the coumarin peak, for example, yielded a relative calibration model of y 98 

= 435.07x + 24,301 for the dilution series (Supplemental Figure S1A). Since the peak area of 99 

coumarin in one of the artificial samples was 672,060 units, its RCI in that sample was 100 

calculated to be 1,489 arbitrary units. 101 

Among the 102 filtered peaks in our validation experiment, 72.0% fitted a linear model, 102 

21.8% fitted a binomial model, and 3.4% fitted a logarithmic model. A combination of a 103 

linear and a binomial model was manually built for one particular peak (Supplemental Figure 104 

S1D). To evaluate the quantitative accuracy of our strategy, we compared the RSDs of the 105 

ratios of the concentrations to peak areas on one hand and to RCIs on the other 106 

(Supplemental Table S2). Indeed, for 75% of the standards (15 out of 20), the quantification 107 

was more reliable when using the RCI. In addition, because all peaks are calibrated using the 108 

same scale range, we can use RCI instead of the peak area to compare changes amongst 109 
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various samples in a more precise manner (Supplemental Results). Moreover, by following 110 

our metabolomics analysis strategy, metabolite peaks that pass the five-step filtering process 111 

and quantified by RCI can be used as a targeted metabolomics dataset. A metabolite report 112 

is also generated displaying the final metabolite list, with each filtered peak annotated with 113 

the unique m/z, the retention time and other evaluation parameters (Supplemental Figure 114 

S2B). 115 

We further applied our strategy for the analysis of the metabolomes of the seeds of 116 

two typical rice cultivars, 9311 (Oryza sativa L. ssp. indica) and Nipponbare (O. sativa L. ssp. 117 

japonica). A total of 2,162 peaks were enumerated from all samples, but 71.3% of these 118 

initial peaks were eliminated using the five-step filtering approach (Supplemental Figure S3). 119 

Principal component analysis (PCA) of the variations between the two rice samples yielded a 120 

model with both a better explanatory performance and a higher predictive power for our 121 

strategy, compared to that for the traditional, non-targeted metabolomics analysis method 122 

(Figure 1D, F and G, and Supplemental Figure S4). 123 

Our new strategy also significantly reduced the number of false positive differential 124 

peaks, filtering out 444 of the 565 peaks that a traditional metabolomics analysis may have 125 

considered as potential biomarkers for the two rice cultivars (Figure 1E, Supplemental Table 126 

S3). For example, the area of the peak 636.2171_0.6162 (m/z_Rt) is 6.3 times larger in the 127 

9311 cultivar sample than in the Nipponbare sample. This peak satisfied the reproducibility 128 

and the variation criteria, and was absent in the blank samples. However, it showed an 129 

unacceptable quantitative performance in the response check (Step 4), with a correlation 130 

coefficient of -0.2415 between the peak areas and the RCI. Thus, although peak 131 

636.2171_0.6162 may be flagged as a distinguishing biomarker by a traditional 132 

metabolomics pipeline, it is revealed by our analysis to represent a compound of 133 

non-biological origin. Even more remarkably, the metabolite report containing our final list 134 

of differential peaks allowed the putative identification of 30 metabolites by database 135 

comparisons, including 12 lipids, nine flavonoids, two amino acids, two phenolics, two 136 

nucleosides, vitamin B6, hydroxylamine and a diterpenoid (Supplemental Table S4). Many of 137 

these are validated biomarkers critically important for the yield and the seed quality of the 138 

two rice cultivars (Supplemental Results). Nevertheless, possible interactions between the 139 
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biological matrix and some compounds in a complex metabolome may complicate the 140 

identification of filtered biomarkers. 141 

In conclusion, our new strategy greatly reduces the number of false positive peaks, 142 

enhances quantitative accuracy, and allows for a more meaningful analysis of comparative 143 

metabolomics datasets. 144 

 145 
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Figure 1.The strategy of LC-MS-based metabolomics analysis. (A) The design of the 196 

metabolomics experiment. DS_Nx, a sample in the dilution series with an Nx dilution factor; 197 

RCI, relative concentration index; SIM, selected ion monitoring; MRM, multiple reaction 198 

monitoring. (B) Overlay of LC-MS total ion chromatograms for a dilution series of a sample 199 

and the blank samples. (C) Benchmarking the five steps of peak filtering using artificial 200 

samples. (D) Principle components analysis (PCA) models for rice samples. Left, the 201 

traditional method; right, the new strategy. R
2
X (cum), cumulative explained variation; Q

2 
202 

(cum), cumulative cross validated R
2
; Comp, principal component identified in the model.(E) 203 

Venn diagram of the number of differential peaks identified in the traditional (circle on the 204 

left) versus the new metabolomics approach (circle on the right). (F) and (G) The loading 205 

S-plots for PCA with the traditional metabolomics method (F) and the new strategy using RCI 206 

(G). 207 

 208 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 


