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Abstract

Female gametophyte is the multicellular haploid structure that can produce embryo and endosperm after fertilization,
which has become an attractive model system for investigating molecular mechanisms in nuclei migration, cell
specification, cell-to-cell communication and many other processes. Previous reports found that the small ubiquitin-like
modifier (SUMO) E3 ligase, SIZ1, participated in many processes depending on particular target substrates and suppression
of salicylic acid (SA) accumulation. Here, we report that SIZ1 mediates the reproductive process. SIZ1 showed enhanced
expression in female organs, but was not detected in the anther or pollen. A defect in the siz1-2 maternal source resulted in
reduced seed-set regardless of high SA concentration within the plant. Moreover, aniline blue staining and scanning
electron microscopy revealed that funicular and micropylar pollen tube guidance was arrested in siz1-2 plants. Some of the
embryo sacs of ovules in siz1-2 were also disrupted quickly after stage FG7. There was no significant affects of the siz1-2
mutation on expression of genes involved in female gametophyte development- or pollen tube guidance in ovaries.
Together, our results suggest that SIZ1 sustains the stability and normal function of the mature female gametophyte which
is necessary for pollen tube guidance.
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Introduction

Female gametophyte plays a pivotal role in the sexual

reproduction of angiosperms. It is the structure that produces

the egg cell and central cell which give rise to the seed embryo and

endosperm after fertilization, respectively. In addition, the female

gametophyte regulates reproductive processes such as pollen tube

guidance, fertilization, and the induction of seed development.

Over recent decades, evidence has accumulated regarding the

function of female gametophyte on pollen tube guidance.

Arabidopsis ovules carrying magatama3 (maa3) [1] or protein disulfide

isomerase like2-1 (pdil2-1) [2] disrupt gametophytic pollen tube

guidance due to delays in embryo sac maturation, indicating that

pollen tube guidance signal(s) emanate only from mature ovules.

Elegant cell ablation experiments in Torenia fournieri and studies on

a synergid-expressed MYB98 gene in Arabidopsis indicate that

synergid cells are the origin of pollen tube guidance signals [3,4].

This is further supported by findings on pollen tube guidance

attractants (LUREs) in Torenia fournieri [5]. Studies on synergid-

and egg-expressed signal protein ZmEA1 in maize (Zea mays) [6],

central cell guidance (ccg) and the GABA Transaminase (pop2) mutants in

Arabidopsis [7] provide evidences that other cells in or

surrounding the embryo sac would function in pollen tube

guidance. However, no study focus on how does the mature

female gametophyte maintain its function.

The small ubiquitin-like modifier (SUMO) E3 ligase, SIZ1, has

been described previously as participating in many processes

depending on SUMO modification of its substrate proteins. SIZ1

regulates Pi deficiency responses [8] and facilitates basal thermo-

tolerance [9]. Another report showed that SIZ1-dependent

SUMOylation of ICE1 may activate and/or stabilize the protein,

facilitate activation of C-Repeat (CRT)/dehydration responsive

element (DRE) binding protein 1A (CBF3/DREB1A) and

repression of MYB15, leading to low-temperature tolerance [10].

Recently, SUMOylation of ABI5 by SIZ1 was demonstrated to

negatively regulate abscisic acid signaling [11]. SIZ1 suppresses

salicylic acid (SA) accumulation and involved in plant innate

immunity and cell division and elongation, the expression of nahG,

a bacterial salicylate hydroxylase that catabolizes SA, in siz1 plants

results in reversal of these phenotypes back to wild-type [12,13].

Furthermore, Jin and colleagues revealed that SIZ1 negatively

regulated transition to flowering under short-days by regulating
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Flowering Locus D (FLD) and SA-dependent pathways [14].

However, whether and how SIZ1 participates in regulating the

plant reproductive process remains unclear.

In the present study, we showed that SIZ1 expressed in the

female organs, affected reproductive efficiency during gametogen-

esis. Some siz1-2 ovules harbored defective female gametophytes

after stage FG7 and disrupted gametophytic pollen tube guidance.

Moreover, no significant change was detected in the transcription

levels of several previously reported genes required for female

gametogenesis or pollen tube guidance between the siz1-2 ovary

and that of the wild type. Based on these findings, the potential

roles of SIZ1 in regulating female gametogenesis were discussed.

Results

SIZ1 is expressed in reproductive organs
Several lines of single-copy homozygous transgenic plants,

which contained an in-frame fusion of a SIZ1 promoter to a GUS–

GFP fusion protein in the Col-0 genetic background, were

generated. The SIZ1 promoter used has been demonstrated to

be fully functional [14]. As a result, GUS activity was detected in

the flowers at different developmental stages, both open and

closed, except for those most recently formed (Figure 1A). Apart

from the strongest GUS activity detected in the petals, GUS

activity was also clearly present in the sepals and pistil, while no

obvious GUS activity was seen in the anthers (Figure 1A, B). In

terms of the female reproductive organs, GUS expression was

particularly high in the style, while a lower level of GUS signal was

also detected in other parts of the pistil (Figure 1B, C). Inside the

ovary, GUS activity was observed in the whole ovule, including

the funiculus (Figure 1E). In contrast, we did not see GUS activity

in pollen grains (Figure 1B, C). Furthermore, consistent with the

GUS analysis results, GFP signal was present in all the cells within

the ovules (Figure 1F). No GUS activity or GFP signal was

detected in the controls (Figure 1D, G).

SIZ1 regulated ovule development
To determine if SIZ1 regulates reproductive processes, silique

size and seed diameter and number were compared between

Col-0 and siz1-2 plants. The siz1-2 silique was significantly

smaller than that of wild type 8–10 days after pollination (DAP;

Figure 2A). Moreover, two significantly different populations of

seeds were observed in the siliques of siz1-2, among which some

seeds were well developed (Figure 2B, D). The others harbored

desiccated ovules which might stop growing at early stages.

Quantitative analysis showed that 23.3% (61.3%) of the ovules

in siz1-2 siliques were desiccated, but only 1.0% (60.5%) of

ovule was desiccated in the wild-type siliques (Figure 2F). To

determine if the desiccated ovule phenotype of the siz1-2 is due

to mutation in the SIZ1, we analyzed ovule development in the

transgenic plants that expressing ProSIZ1::SIZ1-GFP in siz1-2

(SSG), The SSG transgenic plants has been confirmed to rescue

most of the other siz1-2 phenotypes, such as early short day

flowering phenotype [14]. Consistent with previous results, we

also found that expression of SIZ1-GFP could rescue the

impaired ovular development phenotype of siz1-2. The silique

size in SSG plants was similar to that of the wild type, and only

1.3% (60.7%) of defective seeds were found in SSG siliques,

indicating that the abnormal phenotypes of siliques and seeds in

siz1-2 were caused by the absence of SIZ1 (Figure 2A, E, F).

Several siz1-2 mutant phenotypes, such as innate immunity,

early flowering and cell division and elongation, are associated

with elevated SA [12,13,14]. To check if the ovule phenotype of

the siz1 is due to elevated SA, we generated nahG siz1-2 plants by

crossing nahG transgenic plant and siz1-2 [13]. nahG siz1-2 plants

has been confirmed accumulate basal level of SA [13,14].

Notably, reduced SA levels by nahG in siz1-2 did not rescue the

impaired phenotype of ovules during the reproductive process

(Figure 2A, C, F). The siliques at 8–10 DAP in nahG siz1-2 were

similar to those of siz1-2, which were shorter and smaller than

those of wild-type plants (Figure 2A). Moreover, both normal

seeds and desiccated ovules were found in the dissected nahG

siz1-2 siliques, and further analysis demonstrated that 20.7%

(61.2%) of the seeds in the dissected nahG siz1-2 siliques were

desiccated, similar to the impaired phenotype of siz1-2 ovules

(Figure 2C, F).

Figure 1. Expression of the Prosiz1::GUS–GFP gene. (A) Expression
of Prosiz1::GUS–GFP in the whole inflorescence. A GUS signal was
detected in most of the flowers, except the latest ones, while the
strongest GUS signal was found in sepals. The inflorescence in (A) was
stained with 1 mM 5-bromo-4-chloro-3-indolyl-b-glucuronic acid (X-
Gluc) for 12 h. (B) GUS signal in a flower after pollination. The style of
the pistil was stained strongly by X-Gluc, and the upper part of the
carpel and the stem of the stamen were also stained by X-Gluc. No GUS
signal was seen in the anthers. (C) GUS signal in reproductive organs at
the end of pollination. The style was strongly stained by X-Gluc, while
no GUS signal was seen in the stigmatic cells or pollen. (D) No GUS
signal was detected in the whole flower in the wild-type plants after
staining with 1 mM X-Gluc for 12 h. (E) Expression of Prosiz1::GUS–GFP
could be detected in all cells within the ovule before fertilization after
staining with 1 mM X-Gluc for 8 h. (F) GFP fluorescence of Prosiz1::GUS–
GFP can be seen in all cells of the ovules. (G) Wild-type ovule control. No
fluorescence was detected in the wild-type ovule under LSCM. Pg,
pollen grain; Sc, stigmatic cell; St, style.
doi:10.1371/journal.pone.0029470.g001
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Absence of SIZ1 did not influence embryogenesis or
male gametogenesis

Under DIC light microscopy, we found that within the siliques

of siz1-2 at 2 DAP, the fertilized ovules contained well developed

proembryos (Figure 3A, B). Nevertheless, some smaller ovules

were observed in siz1-2 siliques, about 100 mm in size, similar to

those of the unfertilized ovules. Moreover, no proembryo was

detected in these ovules (Figure 3A, C), suggesting that they were

not fertilized.

To assess whether the defects in siz1-2 pollen caused fertilization

failure, the function of siz1-2 and wild-type pollen was examined

through in vitro germination assays and by reciprocal pollinations

between wild-type and siz1-2 plants. When pollinated with pollen

grains from homozygous siz1-2 plants, the pistils of wild-type

seedlings gave rise to normal siliques with nearly full seed-set 8–

10 DAP, more than 99.0% (n = 221) of ovules developed well. In

contrast, when pollinated with pollen grains from wild-type

seedlings, the pistils in homozygous siz1-2 seedlings produced

shorter and smaller siliques with impaired ovule development,

which were similar to those in the self-pollinated homozygous siz1-

2 plants, 21.3% (n = 437) of ovules in these siliques were aborted

(Figure S1B). The in vitro pollen germination showed a similar

pattern to the results from the reciprocal crossing analysis. About

78.6% of pollen grains from siz1-2 germinated after cultivation on

agarose, similar to the germination rate of wild-type pollen

(82.2%). Both wild-type and siz1-2 pollen produced a mass of

pollen tubes with similar appearance, and no obvious difference

was observed in the maximum length or morphology of wild-type

(Figure 3D) and siz1-2 pollen tubes (Figure 3E). Together, these

results indicated that the siz1-2 male gametophyte functioned

normally.

Some ovules in siz1 pistils do not attract pollen tubes
Abundant pollen tubes germinated and grew successfully

through the stigmatic cell, style, and the pollen tube transmitting

tract in the siz1-2 pistil, similar to those of wild-type plants

(Figure 4A, B), indicating that pollen tube growth and sporophytic

guidance were normal in siz1-2 pistils during the sporophytic

guidance stage. In contrast, the pollen tube behaved differently in

siz1-2 and wild-type pistils during the gametophytic guidance

stage. The pollen tubes in wild-type siliques grew along the

funiculus and entered the female gametophyte successfully, after

leaving the transmitting tract, 99.2% (n = 267) of ovules received

pollen tubes (Figure 4C). In siz1-2 ovaries, 17.9% of ovules (130 of

724) did not have a pollen tube arriving at the micropylar opening.

Some pollen tubes appeared to have lost their way soon after they

grew out from the transmitting tract because they did not appear

on the funiculus of some ovules (11.3%, n = 724) (Figure 4D,

Figure S2). Other pollen tubes could grow on the funicular tissue,

they even arrived near the micropylar opening of the ovules (6.6%,

n = 724), but turned away and failed to enter the embryo sacs

(Figure 4E, F, G, Figure S2).

Using scanning electron microscopy (SEM), pollen tubes could

be seen adhering tightly to the funiculus and grow toward the

micropyle, precisely entering the micropylar opening of the ovule

in the wild-type siliques (Figure 4H). Although pollen tubes were

Figure 2. Silique development and seed-set of siz1-2, nahG siz1-2, wild-type, and the Prosiz1::SIZ1-GFP construct-transformed siz1-2
mutant plants (SSG). (A) Siliques of siz1-2, nahG siz1-2, wild-type, and SSG 8–10 days after pollination. (B) Dissected silique from siz1-2 homozygous
plants showing severely reduced seed-set and undeveloped ovules. Similar results were also found in line siz1-3 (data not shown). De, defective
embryo. (C) Dissected silique from nahG siz1-2 plants showing severely reduced seed-set and undeveloped ovules, similar to siz1-2. De, defective
embryo. (D) Dissected silique of a wild-type plant with a full seed-set. (E) Dissected silique of a SSG plant with full seed-set, similar to that of the wild-
type plant. (F) Percentage of defective embryos in siz1-2, nahG siz1-2, Col-0, and SSG pistils. A mean value of three repeats, asterisks indicate no
significant difference between percentage of defective embryos of siz1-2 and nahG siz1-2 (P,0.05).
doi:10.1371/journal.pone.0029470.g002
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present in most of the siz1-2 ovules, they behaved differently after

presenting from the septum. Most of pollen tubes grew along the

funiculus and entered the micropyle of some ovules in siz1-2 pistils

(Figure 4I). However, the pollen tubes in other ovules failed to find

the micropylar opening and grew without definite direction

(Figure 4J, K, L); some of them bypassed the micropyle and grew

on the ovule surface (Figure 4J) or even turned away (Figure 4K),

or ceased to grow near the micropyle (Figure 4L). Furthermore, no

pollen tube growth was found on the funiculus in a small

proportion of siz1-2 ovules (Figure 4M).

SIZ1 is required to maintain the stability of the stage FG7
embryo sac

We next asked whether siz1-2 ovules developed and functioned

normally. Thus, pistils at different developmental stages were

collected from siz1-2 and wild-type plants. Confocal microscopy

showed no obvious difference in ovule development between siz1-

2 seedlings and the wild-type seedlings before floral stage 12c (as

defined by Smyth et al. [15]). Typical embryo sacs of ovules at

different developmental stages could be found in siz1-2 and wild-

type pistils (Figure 5). We found that about half of the ovules in

each silique at floral stage 12c from the siz1-2 seedlings were at

developmental stage FG7, while the other ovules were at earlier

stages, such as FG4, FG5, and FG6; no ovule harbored an

abnormal embryo sac, similar to those in wild-type siliques,

indicating that siz1-2 female gametophyte developed normally as

far as FG7.

After stage 12c, we found that many ovules in the siz1-2 pistils

contained normal embryo sacs, which could be fertilized normally,

similar to those in wild-type pistils (Figure 6A). However, siz1-2

pistils contained 21.2% (n = 585 ovules) abnormal ovules, which

had normal integument and distorted gametophytic cells within

the embryo sac. As shown in Figure 6B, C, D, we did not detect

any nucleus within the embryo sac of 10.1% of siz1-2 ovules,

although profiles of gametophytic cells were clearly differentiated

(Figure 6B). Additionally, 8.7% of the ovules harbored distorted

embryo sacs and the gametophytic cells were permeated with

fluorescent blocks (Figure 6C). Shrunken embryo sacs with weak

fluorescent blocks were observed in the rest of the ovules (2.4%).

Expression levels of genes related to female
gametophyte development and pollen tube guidance
did not change in siz1-2

To explore whether siz1 mutation affected the expression of

previously reported genes related to female gametophyte devel-

opment or pollen tube guidance, qRT-PCR analyses were

performed. cDNAs were prepared from ovary RNA samples of

siz1-2 and wild-type plants at stage 12c. As shown in Figure 7,

although the expression levels varied among different genes, the

expression level of the genes showed no obvious difference

between siz1-2 and wild-type plants. Loss-of-function in a two-

component response system component, CYTOKININ-INDE-

PENDENT1 (CKI1) and its downstream proteins, HISTIDINE

PHOSPHOTRANSFERs (AHPs), containing collapsed embryo

sacs, were considered to be disrupted during developmental stage

FG5/FG6 in the female gametophytic process of cellularization

[16]. The CKI1 transcript was detected at the lowest abundance

and showed no significant difference in its expression level between

the wild-type and the siz1-2 ovaries, and the expression levels of its

downstream genes, AHPs, in siz1-2 were similar to those of the

wild type, indicating that their expression was apparently

unaffected by the absence of SIZ1. Although the expression levels

of pollen tube guidance-related genes, CCG, MAA3, MYB98,

PDIl2-1, and POP2, varied in different cDNA samples, their

expression levels did not change significantly in siz1-2 compared to

the wild type.

Discussion

Pollen development is essential for plant reproduction, and

some proteins have been shown to be involved in successful

fertilization by regulating pollen tube growth in Arabidopsis. Jiang

and colleagues found that the VANGUARD1 (VGD) was required

for polarized growth of the pollen tube, possibly by modifying the

cell wall and enhancing the interaction of the pollen tube with the

female style and transmitting tract tissues [17]. Recently, a

knockout mutation in THERMOSENSITIVE MALE STERILE 1

(TMS1), grown at 30uC, was reported to have greatly retarded

pollen tube growth in the transmitting tract, resulting in a

significant reduction in male fertility [18]. In the present study, we

found that the siz1-2 mutant produced shorter and small siliques,

Figure 3. Analysis of ovule development and in vitro germina-
tion of siz1-2 pollen grains compared to the wild type by DIC
microscopy. (A)–(C) Ovules in a siz1-2 mutant under a DIC microscope.
The fertilized ovule grew bigger and formed a quadrant embryo (Em)
within the embryo sac (B); the unfertilized ovule stopped growing, with
no proembryo appearing. (D) Wild-type pollen tubes cultured at 28uC in
vitro. Pollen tubes with normal morphology are indicated by an arrow.
(E) siz1-2 pollen tubes incubated under the same condition as (A),
showing no obvious difference compared to the wild-type pollen tube.
Em, embryo. Pg, pollen grain. Pt, pollen tube. Bar = 50 mm in (A), 8 mm
in (B) and (C), 200 mm in (D) and (E).
doi:10.1371/journal.pone.0029470.g003
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in which 23.3% (61.3%) of unfertilized ovules were distributed

along septum. We had preliminarily presumed that the defective

phenotype during reproductive process in siz1-2 could be caused

by defects in pollen grain germination or pollen tube growth, but

the results from reciprocal crossing between homozygous siz1-2

and wild-type plants and in vitro pollen activity analysis showed no

significant difference in pollen grain germination and pollen tube

development between siz1-2 and wild-type seedlings. From these

observations, we suggest that the absence of SIZ1 does not affect

pollen development, and the reduced seed-set in the siz1-2 mutant

may be due to other causes.

The developmental pattern of female gametophytes in most

angiosperm species is the Polygonum type, including Arabidopsis

thaliana, in which a diploid megaspore mother cell undergoes

meiosis to produce four haploid megaspores. Among them, one of

the megaspores survives and the other three degenerate (FG1), the

functional megaspore undergoes the first round of mitosis (FG2),

followed by the formation of the central vacuole between the two

nuclei (FG3), subsequently the second round of mitosis creates a

fournucleate cell (FG4) and the last mitosis produces an

eightnucleate cell (FG5). Afterwards, nuclear migration and

cellularization result in the seven-celled embryo sac (FG6), and

finally the three antipodal cells degrade and the mature embryo

sac forms (FG7) [19]. It was found that the female gametophytic

division cycle was arrested in slow walker2 (swa2), which led to the

growth arrest of the female gametophytes at the two-, four-, or

eight-nucleate stage [20]. Pagnussat et al. (2007) revealed that an

extra functional egg cell can be detected instead of a synergid in

the embryo sac of the eostre mutant, which underwent disordered

nuclear migration from FG3 [21]. In addition, mutations in

LACHESIS (LIS) and GAMETOPHYTIC FACTOR1 (GFA1) showed

disruption after cellularization by changing the cell identities inside

Figure 4. Pollen tube growth in the pistils from wild-type and homozygous siz1-2 plants. (A)–(G) decolorized aniline blue staining of pistils
1–2 days after pollination (DAP). (A) The whole scene of pollen tube growth within the siz1-2 pistil. (B) The whole scene of pollen tube growth within
the wild-type pistil. (C) The fertilized wild-type ovules showing pollen tubes (arrow) grew into the micropyle (arrowhead) and became bigger in
volume. The pistil was harvested 2 days after pollination. (D) Mutant ovules without a pollen tube growing toward the funiculus, while many pollen
tubes grew within the placenta. (E) The mutant ovule with pollen tube (arrow) growing around the funiculus, but turning away from the funiculus,
without targeting the micropyle (arrowhead). (F) Two undeveloped ovules with pollen tubes (arrow) growing around the funiculus without targeting
the micropyle. (G) Representative mutant ovule with pollen tube growing near the micropyle opening but failing to target the female gametophyte.
(H)–(M) Scanning electron microscopy analysis of pistils 1–2 days after pollination. (H) Scanning electron micrograph of wild-type ovules showing that
pollen tubes grew along the funiculus and then entered the micropyle (arrowhead). (I) Scanning electron micrograph of some siz1-2 ovules showing
that pollen tubes grew along the funiculus and then entered the micropyle (arrowhead), similar to those of the wild type. (J)–(M) Aberrant pollen
tube guidance in siz1-2 ovules. (L) A pollen tube stopped growing near the micropyle (arrowhead). (J) A pollen tube bypassing the micropyle and
growing on the surface of the integument. (K) A pollen tube grew along the funiculus but failed to enter the micropyle and turned away. (M) An
example showing that no pollen tube grew on the funiculus of the ovule. St, style; Tt, pollen tube transmitting tract. Arrows indicate pollen tubes and
arrowheads show micropyle. Bar = 200 mm in (A) and (B), 40 mm in (C)–(M).
doi:10.1371/journal.pone.0029470.g004
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the embryo sac [22,23]. In contrast, the binding protein1 binding

protein2 (bip1 bip2) double mutation were defective in the fusion of

polar nuclei during their development [24]. The embryo sacs of

mutations in CKI1 or AHPs disrupted during developmental stage

FG5/FG6, the process of cellularization [16]. In our study, no

ovule contained a disrupted embryo sac in siz1-2 siliques of floral

stage 12c, in which about half of the ovules were at developmental

stage FG7, similar to those in wild-type siliques, indicating that

siz1-2 female gametophyte developed normally without abnor-

malities in cell division, nuclear migration, gametophytic cell

identities or polar nuclei fusion in embryo sacs before stage FG7.

However, 48 h after stage 12c, 21.2% (n = 585) of the ovules

contained distorted embryo sacs in siz1-2 pistils, and the profiles of

cellularized female gametophytic cell were still detected within

those impaired embryo sacs, suggesting that some part of the

mature embryo sacs collapsed rapidly in siz1-2. Furthermore, the

expression levels of CKI1 and AHPs were unaffected by the absence

of SIZ1. These results suggest that SIZ1 has a role in sustaining the

stability of the mature embryo sac, rather than being involved in

the development and cellularization of female gametophytic cells.

Kinds of proteins in the ovule affect pollen tube guidance by

different mechanisms. POP2 regulates both pollen tube growth

and guidance by influencing the asymmetric distribution of GABA

in the sporophytic cells surrounding the female gametophyte [25].

MYB98 and CCG have been shown to regulate pollen tube

guidance via effects on synergids and the central cell, respectively

[7,26]. MAA3 and PDIL2-1 regulate female gametogenesis to

provide a normal rhythm of guidance signals [1,2]. In the present

study, we found that some mature ovules in siz1 mutants failed to

attract pollen tubes, while the absence of SIZ1 did not lead to a

change in the mRNA levels of those proteins previously identified

to be involved in pollen tube guidance, seemingly ruling out the

possibility that SIZ1 might work as a transcription regulator for

these genes. Based on different traits in the impaired female

gametophytes of siz1 and other mutants defect in female

gametophyte development, we conclude that SIZ1 affect pollen

tube guidance by sustaining the stability and normal function of

mature female gametophyte.

siz1 mutants have elevated salicylic acid (SA) levels, which could

be restored to basal level by expression of the bacterial salicylate

hydroxylase gene nahG [13]. The mechanism for SA accumulation

in siz1 mutants is not elucidated thus far, which may be attributed

to the SP-RING domain of the SIZ1 protein [27]. Several

experimental results indicated that by suppressing SA accumula-

tion, SIZ1 played roles in innate immunity [13], and cell division

and elongation, control of leave number and volume, and

dwarfism [12]. These phenotypes restored to wild type in nahG

siz1-2 plants. In contrast, the impaired phenotypes of female

Figure 5. Ovule development from stage FG1 to FG7 in the wild type and siz1-2 mutant. The upper panels show ovule development of the
wild type, as revealed by laser scanning confocal microscope, while the lower panels show ovule development of the siz1-2 mutant. Corresponding
development stages of the ovules examined are indicated below. Bar = 20 mm.
doi:10.1371/journal.pone.0029470.g005

Figure 6. Final phenotypes of the female gametophyte in the wild type and siz1-2 mutant. (A) LSCM images of an ovule derived from a
wild-type flower; the pistil was harvested 2 day after emasculation. (B)–(D) LSCM images for ovules derived from siz-1-2 flowers; the pistils were
harvested 2 days after emasculation. Percentages of abnormal female gametophytes among the examined ovules are indicated below. Cn, central cell
nucleus; En, egg cell nucleus; Sn, synergid cell nucleus. Bar = 40 mm.
doi:10.1371/journal.pone.0029470.g006
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gametophyte development in nahG siz1-2 plants were similar to

those in siz1-2, suggesting that the disruption of female

gametophyte development was independent with elevated accu-

mulation of SA in siz1 plants. Given the complex relationship

between SA and SIZ1, the results in the present study were

insufficient to define the roles of SA at basal levels in female

gametophyte development.

SIZ1 has been found to play roles in many different aspects via

its SUMO E3 ligase function. Most of the previous reports showed

that SIZ1-dependent SUMOylation was involved in many stress

process, including responses to Pi deficiency [8], unfavorable

temperature [9,10], flowering time control [14], and abscisic acid

signaling regulation [11]. Saracco et al. showed that a SUMO1 and

SUMO2 double mutant, mutations affecting SUMO-activating

enzyme subunit SAE2 and the SUMO-conjugating enzyme SCE1

(the only SUMO E2 enzyme in Arabidopsis), were embryonic-lethal;

fertilized zygotes were aborted at various stages during early

embryogenesis [28], indicating that the SUMOylation pathway

was essential for embryogenesis. Although these mutants appeared

to undergo normal male and female gametophyte development,

we can not rule out the possibility that SUMOylation may

influence gametogenesis process since low SUMOylation levels

can still be detected in these mutants. The present study

demonstrated that mature female gametophytes were rapidly

disrupted in the absence of the SIZ1 protein, while other ovules

survived and developed well, indicating that SIZ1 plays important

roles in female gametogenesis.

In our study, only 20,25% of female gametophytes aborted in

siz1-2 pistils, since both siz1-2 and siz1-3 are null mutants [8].

First, presumably in addition to AtSIZ1, there are other SUMO

E3 ligase(s) (for example, HPY2/MMS21 [29,30]) may function

redundantly during female gametophyte development. Recently it

has been found that diSUMO-like ZmDSUL regulated female

gametophyte in maize [31]. In the ZmDSUL-RNAi lines 26% of

female gametophytes have not been fully differentiated. AtSIZ1

mainly involved in SUMOylation of SUMO1 and SUMO2 in

Arabidopsis [28]. It is interesting to test whether another SUMO

E3 ligase(s), such as HPY2/MMS21, facilitates SUMOylation of

SUMO3/4/5/6 that regulates female gametophyte in Arabidop-

sis. Another alternative possibility is that the AtSIZ1 regulates

balance of histone methylation status in the genes that are required

for female gametogenesis. Female gametogenesis require precise

gene regulatory networks [32,33]. The HMTs (histone methyl-

transferases) and HDMs (histone demethylases) monitor dynamic

histone methylation status, which is required for high order gene

expression regulation [34]. In Arabidopsis, a SET-domain protein,

SDG2 (SET DOMAIN GROUP2), regulates H3K4 methylation

status, is required for gametophyte development [35,36]. Clough

et al. (2007) found that another SET-domain protein, Egg,

regulated oogamete development by regulating trimethylation of

histone H3K9 in Drosophila ovary [37]. MBD1 (methyl-CpG-

binding domain1) was found to modulate histone methylation of

H3K9 by forming stable or transient complex with a HMT

protein, SETDB1 [38,39]. Recently, Mathhew et al. (2006)

revealed that PIAS-mediated SUMOylation of MBD1 inhibited

the formation of MBD1/SETDB1 complex, and overexpression of

PIAS1 repressed the SETDB1-mediated histone H3K9 methyla-

tion of p53BP2 [40]. As a member of PIAS-family, AtSIZ1 and

Figure 7. Expression patterns of selected genes from siz1-2 and wild-type siliques. The tubulin a-2 gene (AT1G04820) was used as the
internal control, and its expression level was set arbitrarily as 1.
doi:10.1371/journal.pone.0029470.g007
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other PIAS proteins share high sequence identity and show

conserved functions [10,41,42]. In the future, it is interesting to

test whether AtSIZ1 interacts with a SET-domain protein to

maintain balance of histone methylation status in Arabidopsis

ovules.

Materials and Methods

Plant Material and Growth Conditions
Arabidopsis (Arabidopsis thaliana) Col-0 ecotype genetic resources

for this research were the wild type, siz1-2 [8], nahG siz1-2 [9],

ProSIZ1::GUS–GFP (single-copy homozygous transgenic plants that

contained an in-frame fusion of a SIZ1 promoter to a GUS–GFP

fusion protein in the Col-0 genetic background) and SSG

(ProSIZ1::SIZ1-GFP-expressing siz1-2 plants) [14]. Arabidopsis

plants were grown under long-day conditions (16-h-light/8-h-

dark) at 22uC.

Pollen Germination and Microscopy
Pollen from open flowers was suspended in growth medium as

described by Palanivelu et al. [25], which contained 18% sucrose,

0.01% boric acid, 2 mM CaCl2, 1 mM MgSO4). 2–3 mL of the

pollen suspension was spotted on growth medium containing 0.5%

purified agarose (Bio-Rad). Wild-type and siz1-2 pollen grains

were transferred on the same petri-dish and incubated at 28uC for

16 hr. Images were captured on a Zeiss Axiovert with Axiovision

software.

Fluorescence Staining of Pollen Tubes
To visualize the in vivo geminated pollen tubes, siliques were

processed as previously described by Huck [43] in a modified

method. Siliques were opened with a fine needle under a

stereoscope and fixed immediately at room temperature 16 hr in

the fixation solution containing 10% acetic acid, and 90% ethanol.

The fixed sample was hydrated by passing through an alcohol

series (70, 50, 30 and 10%) with 10 min for each step. The sample

was further softened with 1 M NaOH at 65uC for 24 hr,

subsequently rinsed twice with 100 mM sodium phosphate buffer,

pH 7.0, each for 5 min. Pollen tubes were stained with 0.1%

aniline blue (Sigma-Aldrich) for 10 min and washed three times

with the sodium phosphate buffer before observation. Stained

samples were observed using a Zeiss Axioplan microscope (Carl

Zeiss) equipped with an epifluorescence UV filter set (excitation

filter at 365 nm, dichroic mirror at 395 nm, barrier filter long-pass

at 420 nm).

GUS Assays
GUS staining was performed according to Vielle-Calzada et al.

[44]. Pistils and siliques were opened and incubated in GUS

staining solution (1 mg/mL X-Gluc [Biosynth], 2 mM

K4Fe(CN)6, 2 mM K3Fe(CN)6, 10 mM EDTA, 0.1% Triton X-

100, and 100 mg/mL chloramphenicol in 50 mM sodium

phosphate buffer, pH 7.0) for 2 to 3 d at 37uC. The stained

sample was fixed with 70% ethanol. Stained ovules and sections

were observed on a Zeiss Axioplan microscope with Nomarski and

dark-field optics.

Pollination Experiment
The stamen at floral stage 12c was emasculated by carefully

removing the stamens. After 24 h of emasculation, pollen grains

from wild-type or mutant seedlings were dispersed onto the

papillar cells of the recipient stigma. Pistils were allowed to set

seeds or checked microscopically at different times after pollination

for pollen tube entry.

Seed-Set Analysis
To analyze seed-set, siliques 8 to 10 d after fertilization were

placed on double-sided tape and transversely dissected under a

stereoscope, and then undeveloped and normal ovules were

counted. Images of siliques were taken with a Nikon SMZ800

stereoscope. For reciprocal crosses with Col-0, flowers were

emasculated in the morning and crossing was performed 24 h

later.

Laser Scanning Confocal Microscopy
To study the cytological structure of the female gametophyte,

ovules were fixed and observed as described previously [19].

Inflorescences were fixed in 4% glutaraldehyde in 12.5 mM

cacodylate buffer, pH 6.9, and dehydrated through a conventional

ethanol series and subsequently cleared in 2:1 of benzyl benzoate:

benzyl alcohol. Then, siliques were opened with a 30.5-gauge

syringe along the replum, and ovules were mounted with

immersion oil and sealed under No. 0 cover slips (ProSciTech)

with fingernail polish. The developmental stages of ovules were

determined according to the criteria described by Christensen

et al. [19]. The sample was then viewed with a Zeiss laser scanning

microscope (Carl Zeiss Meta 510, Wetzlar, Germany) with a 488-

nm argon laser and a long-pass 530 filter. Serial optic sections

were collected and projected with Zeiss LSM Image Browser

software (Carl Zeiss) and Photoshop version 7.0 software (Adobe).

Scanning Electron Microscopy
For scanning electron microscopy, pistils from both wild-type

and siz1-2 plants 1 to 2 DAP were carefully opened with a sharp

needle and then fixed with FAA (50% ethanol, 3.7% formalde-

hyde, and 5% acetic acid) overnight. After a series of dehydration

steps using increasing concentrations of ethanol of 70%, 80%,

90%, 95% and 100%, the pistils were washed successively in series

of the ethanol- to-amyl acetate ratios of 3:1, 1:1, 1:3, and at last

100% amyl acetate in an amyl-acetate-resistant container (10–

20 minutes per step). Subsequently the pistils were subjected to

critical point drying, then mounted for sputter coating with gold

palladium for 100 s and observed on a Hitachi S-4800 scanning

electron microscope at an accelerating voltage of 10 kV.

RNA extraction and preparation
Pistils of 12c were used for analysis. Trizol reagent (Invitrogen,

Carlsbad, CA, USA) was used for the RNA extraction, and RNA

samples were further treated with DNase to eliminate DNA

contamination.

qRT- PCR analysis
Polymerase chain reactions were performed with an Mx3000P

Real-Time PCR System (Stratagene, CA), using SYBR_ Green to

monitor dsDNA synthesis. The reaction system was as followed:

10 mL 23 SYBR_ Green Master Mix reagent (TOYOBO CO,

OSAKA, JAPAN), 1 mL of 1:5 diluted reverse transcription

reaction, and 400 nM of each gene-specific primer in a final

volume of 20 mL. The following standard thermal profile was used

for all PCRs: pre-denaturation at 95uC for 1 min; denaturation at

95uC for 5 s, annealing at 58uC for 10 s, and prolongation at 72uC
for 15 s, 40 cycles. Data were analyzed using Mx3000P system

software (Stratagene, CA).

The data were analyzed using the comparative CT (threshold

cycle) method. In order to compare the data from different PCR

runs or cDNA samples, CT values for genes were normalized to

the CT value of TUB2, which was a housekeeping gene included

in each PCR run. The sequences of the primer pairs used were
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CKIl-f: AGGTCGAACAATGCGACAG; CKIl-a: CTCTCT-

AGTTGCTTCATAGC; AHP1-f: CCAAGACTCTGATAGGA-

TTC; AHP1-a: GGAAGACAACACAAGCATTC; AHP2-f: GC-

TCTCATTGCTCAGCTTC; AHP2-a: CTGATAAGCTTCAC-

ACAATC; AHP3-f: TTGTGGCTGAGGTTGTTACT; AHP3-

a: ACTCCTTGAGGGTAACACAA; AHP4-f: GAAGAGCTC-

CAAGATGATGC; AHP4-a: TGATGCATGTAACTATCCAG;

AHP5-f: TGAAGGGTGTCTAAGGTGTTT; AHP5-a: TTGT-

GTCATCAGCCTTGAAC; MAA-f: CACTGTTGATGGGTT-

CCAG; MAA-a: TGAACCAACGACCAATACTG; MYB98-f:

AATGGACTGCTGAAGAAGAC; MYB98-a: TCTATCAACA-

CTCTGTCCTC; PDIl-f: GTGGCAGGGATTTAGATGAC;

PDIl-a: CTTGCTTCCTCTTCTATGCG; CCG-f: CGAGTT-

CTTTGCTGGTTTAGA; CCG-a: GTTTCCATCGCTAAAT-

CTGCT; POP2-f: CATTCTTTGGAGCCGAGTG; POP2-a:

TGCTGAGCCTTGAGTTCTT; TUB-f: TTTACCCATCTC-

CACAGGTC; TUB-a: AATAACCTGAGAGACGAGGC.

Supporting Information

Figure S1 Dissected silique of Col-0 seedling pollinated with

siz1-2 pollen and dissected silique of of siz1-2 seedling pollinated

with Col-0 pollen. (A) Dissected silique from siz1-2 plants

pollinated with Col-0 pollen showing severely reduced seed-set

and undeveloped ovules. De, defective embryo. (B) Dissected

silique from Col-0 plants with a full seed-set. (C) siz1-2 pistils

pollinated with wild type pollen grains resulted in 21.3 (63.2)%

(n = 437) of aborted ovules, whereas only about 0.9 (60.1)%

(n = 221) of ovules did not fertilize when wild type pistils were

pollinated with siz1-2 pollen grains.

(TIF)

Figure S2 Rates of pollen tubes guidance defect in wild type and

siz1-2 pistils. When the pistils of siz1-2 plants were pollinated with

wild type pollen grains, about 11.3% of ovules (n = 724) did not

attract pollen tubes to the funiculus (marked as Fd), and 6.6% of

ovules (n = 724) had pollen tubes on the funiculus, but failed to

grow into the micropylar opening of the ovules (marked as Md).

When wild type pistils were pollinated with wild type pollen grains,

only 0.8% of ovules (n = 267) did not have pollen tubes on the

funiculus (marked as Fd), other ovules had pollen tubes on the

funiculus and they can grow into the micropyle successfully.

(TIF)
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